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ABSTRACT

A variety of approaches to language identification, based on
{2) acoustic features, (b) broad-category segmentation, and (c)
fine phonetic classification, are introduced. These approaches
are evaluated in terms of their ability to distinguish between
English and Japanese utterances spoken over a telephone chan-
pel. It is found that the best performance (86.3 % accurate
dassification of utterances with a mean length of 13.4 sec) is
obtained when fine phonetic features are employed. In addi-
tion, the results show the importance of discriminatory training
rather than likelihood estimation.

1. INTRODUCTION

As developments in telecommunications and long-distance
travel cause national borders to become increasingly transpar-
ent, the ability to identify which language is being spoken is
growing in importance. The utility of tasks such as directory
assistance or automatic translation is, for instance, improved
substantially by the availability of 2 means of identifying which
linguage is being spoken. Given the scarceness of humans able
b identify several languages, and the economic disadvantages
ofemploying such people for this task, it is clear that automatic
language identification is of much practical importance.

. Automatic language identification is also very interesting for
theoretical reasons. It resembles automatic speech recogni-
tion and automati¢ speaker identification in several ways, but
Uso differs in important respects from both those tasks. It is,
for example, neither necessary nor sufficient for the purposes
of automatic language identification to recognize each of the
Phonemes occurring in an input speech signal.

- Because automatic language identification is a relatively new
Pursuit, it is currently not clear which approaches to this task
Promise the best performance. As an initial attempt to under-
$tand what the possible approaches are, and what advantages
Wd disadvantages can be expected from each, we present and
®mpare three conceptually distinct techniques for perform-
Bg this task. These techniques are based on (a) raw acoustic
katures, (b) broad phonetic categories, and (c) fine phonetic
Qlegories.

" To simplify matters, we limit our task to the distinction
*lween English and Japanese utterances. This will provide us
Vith a basic comparison between the various approaches, which
"l be refined by the introduction of additional languages in
‘“\lre work. Also, our focus is on telephone speech, since this
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is likely to be the most important application of automatic
language identification in the near future. The data employed
are taken from the OGI-TS corpus (7], and are described in
more detail in Section 3.

In section 2 we describe the three approaches to automatic
language identification (LID) studied here. Section 3 describes
the results obtained with these approaches, and a discussion is
contained in Section 4.

THREE APPROACHES TO LANGUAGE
IDENTIFICATION

This section describes (2) a one-stage approach based on raw
acoustic features, (b) a two-stage approach - broad phonetic
segmentation 5] is performed in a first stage before extracting
features for language classification in a second stage -, and
(c) another two-stage approach, in which the broad-category
segmentation in (b) is replaced by a fine phonetic classifier.

All neural network classifiers used here are fully-connected,
feed-forward networks trained using backpropagation with con-
jugate gradient optimization [1]. The number of hidden nodes
was derived experimentally for each case.

In all cases the acoustic representation used is a seventh
order Perceptual Linear Predictive (PLP) model {4], yielding
8 coeflicients (including one for energy). This is computed on
a 10 msec interval of speech, time shifted every 3 msec for
the approaches based on acoustic features and broad-category
segmentation, and every 6 msec for the fine-phonetic approach.

2.1. Identification using acoustic features

A baseline approach to using spectral features is to classify each
frame as one of the two languages using a neural network, and
accumulate the network output activations across all frames
of the utterance for each language. The language with the
maximum accumulated activation score is the winner.

The spectral features consisted of 56 averaged PLP coef-
ficients — the abovementioned 8 coefficients averaged within
each of 7 regions spanning a 171 ms window centered on the
frame to be classified. The sampling intervals are shown in
Figure 1. The objective was to provide substantial contextual
information about the chosen frame to the network.

Frames were sampled at fixed intervals from each utterance.
Several network configurations were experimented with. The
best network performance on a frame-by-frame base was 59%,
obtained from a network with 48 hidden nodes trained on data
with a 24 ms sampling interval. The performance of this ap-
proach on whole utterances is listed in Section 3.

2.
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Figure 1. Spectral Experiment I: Sampling intervals for the PLP
features. The solid boxes indicate the intervals over which PLP
coefficients are averaged. Dashed boxes indicate intervals that are

skipped.

2.2. Identification using broad phonetic categories

2.2.1. Broad-Category Segmenter

Broad-category segmentation is performed by a fully-
connected, feed-forward, three-layer neural network that as-
signs 7 broad phonetic category scores to each 3 ms time frame
of the utterance [6). The broad phonetic categories are: vowel
(VOC), fricative (FRIC), stop (STOP), pre-vocalic sonorant
(PRVS), inter-vocalic sonorant (PRVS), post-vocalic sonorant
(POVS), and closure or silence or background noise (CLOS).

The input to the segmenter consists of 120 spectral features
derived from a PLP analysis [4] of the waveform. The features
were empirically derived to capture the contextual information
in the vicinity of each frame [2].

A Viterbi search, which incorporates duration and bigram
probabilities from ten langunages, uses these frame-based out-
put activations to find the best scoring sequence of broad pho-
netic category labels spanning the utterance.

Several networks were trained and evaluated on the devel-
opment set. The best network performance was 71.6% on the
development set.

2.2.2. Language Classification

Two types of classifiers were trained based on the output
of the broad-category segmenter — one used various reasures
based on bigram occurrences, and the other employed a win-
dow of outputs from the broad-category classifier as input.

Broad Category Bigrams There are 20 legal segment-
pairs of the seven broad phonetic categories, VOC, FRIC,
CLOS, STOP, PRVS, INVS and POVS. Four feature sets based

on segment-pairs were examined:

¢ Segment-pair Frequency (SPF): number of occurrences of
each segment-pair per second of speech, and

¢ Segment-pair Ratio (SPR): ratio of the number of occur-
rences of each segment-pair to the total number of seg-
ments in the utterance

. chincnt-pair Median Duration (SPMD): median duration
of each segment-pair in an utterance

¢ Segment-pair Duration Ratio (SPDR): ratio of the total
duration of all occurrences of a segment-pair in an utter-
ance to the total utterance duration

There was some separation in the distribution for SPF, SPR
and SPDR for the following segment pairs: 1)POVS-FRIC,
2)CLOS-STOP 3)VOC-CLOS, and 4)VOC-POVS. Of these,
VOC-POVS had the maximum difference in distributions. In-
terestingly, no such separation was evident for the SPMD fea-
ture set indicating that English and Japanese differed only in
the number of VOC-POVS pairs rather in their median du-
rations. This yields 12 features to be used for training and
testing of the neural network classifier.

Window of Segments Features from a moving window of
N = 15 segments were presented to the network at a time. For
each segment in a window, the following feature measurements
were made:

1308

Eurospeech (ESCA), pp. 1307-1310, 1993
Data Capture

e |

Feature Extraction at Signal level
(PLP coellicients)

I l

Fam Siage l

Frame-based Frame-based
Phonetke Classification Phonetic Classification
of English phonemes of Japanese pbonernes
T T
— 1 i
r Feature extraction J I Fealure extraction

| I

’ Language Classification

Saccod Suge

Figure 2. Modules of the Two-Stage Language Identification Sys-
tem

o The segment duration

o A vector of length seven, representing the broad phonetic
label with the averaged frame-based scores from the seg-
menter network for each of the seven phonetic categories.

The network produced 2 language activation scores for each
window of N segments, and the window was shifted frame-by-
frame over the whole utterance. The 2 language scores were
accumulated as the window progressed through the utterance.
When the end of the utterance was reached, the language with
the maximum accumulated activation score was taken as the
system response.

The network had 120 (= 15 x 8) input neurons, 32 hidden
neurons, and 2 output neurons. The percentage of segment
windows correctly classified was 66.8%.

2.3. Identification using fine phonetic categories
This section describes a two-stage system depicted in Figure 2.
In the first stage, features are derived from the signal in order
to perform a frame-based phoneme classification of the incom-
ing speech signal. Features are then derived from this classifier
output and used to perform language classification in the sec-
ond stage.

2.3.1. Phoneme Classification

For each sampled frame, 56 (= 8 x 7) PLP coefficients within
a 174 msec window, centered on the {frame to be classified, were
computed and served as input to each of the phonetic classifiers
[3).

The English classifier assigns 39 phonemic category scores
to each 6 msec time frame. The 39 labels provide a quasi-
phonemic level of description, in which most allophonic vari-
ations are ignored. Similarly a Japanese network is trained
with 25 output nodes representing each of the phoneme cate-
gories. The English and Japanese phonetic classifiers perform
with 48% and 46% accuracy, respectively, when evaluated op
a test set of hand labeled speech from each language.

Two Viterbi searches, each incorporating duration and bi-
gram probabilities from the corresponding language, use thesé
frame-based output activations to find the best scoring s¢
quence of phoneme labels spanning the utterance.

2.3.2. Language Classification
Language classification is performed based on (a) unigral
features and (b) bigram features.



Unigrams In the second stage three groups of 64 unigram
features each are derived from the outputs of the two classi-
fiers. For each of the 64 English and Japanese phonemes three
{eatures are derived independently of each other, resulting in 2
3 x 64 = 192 element feature vector representing an utterance.
Language classification is performed by a network assigning
both an English and a Japanese language score to each incom-

ing feature vector.
The three features extracted from each output of the first-
stage classifier are described below.

Average Output Activation. (Average H)

N
Average H; = I_IV. Zd:(Pi). (1)
1=l

where d¢(p;) denotes the activation of the i** phoneme at
time t, and N the number of {rames over which the feature

was extracted.
Maximum Output Activation. (Maximum)

vl <i<I (2)

. = du(po),
Maximum; x?:ang «(pi)

where I is the number of phonemes. Rare occurrences of
language-specific phonemes may be rendered invisible in
the averaging process. This feature is designed to over-
come such limitations.

Variation in Output Activation. (Variation H)

N
Variation H; = -11\7 Z[d:(m) — Average H i]2 (3)

t=1

For completeness, the language classifier was trained on the
64-dimensional vectors resulting from each of the features in
isolation as well as on the 192-dimensional vector resulting
from combining all three features.

Bigrams To extend this approach, we also studied fea-
tures derived from the transition probabilities between pairs
of phonemes - i.e., using bigram probabilities.

The frame-by-frame outputs of the English phoneme clas-
sifier described above were converted into a time-aligned se-
quence of the phoneme labels by applying minimum and max-
imum duratiqn constraints of 3 msec. and 300 msec., respec-
tively. In principle, we would like to use the transition {requen-
cies for all consecutive pairs of phonemes as features to the clas-
sifier, but the number of possible pairs is 39 x 38, which is too
large given the amount of training data available. We therefore
limited our features to N transition probabilities, namely those
probabilities whose average values over the Japanese and En-
glish training sets differed the most. N was varied for optimal
performance (see Section 3).

Thus, the transition probabilities of these N pairs were used
asinput to a neural-net classifier, which was trained to produce
2 Japanese-English distinction as output.

Combining unigram and bigram features Finally, both
unigram and bigram features are combined. The input feature
vector to the language classifier now consists of the 3 unigram
features derived for each of the 64 phonemic outputs of the
first-stage classifiers resulting in a 192 (64x3) element vector,
concatenated with the N occurrence {requencies of the most
common pairs.
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Label Tratning Set Development Set

Tokens | Frames | Tokens | Frames
vOC 3274 6251 1297 5578
FRIC 1314 6336 473 5353
CLOS 2413 6530 787 5284
STOP 1150 6523 442 5795
PRVS 383 6568 124 4991
INVS 887 6424 390 6037
POVS 648 6462 265 5854

[ TOTAL | 10069 | 45094 | 3778 | 38892 |

Table 1. Distribution of Tokens and Frames in the Training and
Development Sets for the broad category segmenter

Train Test
tterances | Frames | Utterances | Frames
English Phonetic
Classifier 50 80502 20 7441
Japanese Phonetic
Classifier 35 20326 10 5138

Table 2. Division of Labeled Data into Training and Test set for
the phonetic classifier

An alternative way to combine unigram and bigram proba-
bilities was also investigated. Language likelihoods were esti-
mated with a Viterbi search using unigram and bigram prob-
abilities. The Viterbi search maximizes

(4)

where L, is logarithmic likelihood at frame t, P(p;|pi) is the
transition probability from phoneme pi to p;, and o(j,) is the
activation of phoneme p; from the phoneme classifier at {frame
t. For each language, P(p;|p:) for all i and j were estimated
from the training sets, and the classifier assigned an incoming
utterance to the language with the largest likelihood according
to this expression. (In practice, the likelihood for Japanese was
scaled by a factor slightly larger than 1 to account for the fact
that certain English phonemes do not occur in Japanese. This
scaling factor was chosen to give optimal training-set perfor-
mance.)

L. = max [L,—; + log { P(p;lpi) - 0(4, )}],

3. RESULTS
3.1. Training and test data
8.1.1. Multi-Language Telephone Speech Corpus

The segmentation and classification algorithms were devel-
oped and evaluated using the OGI Multi-language Telephone
Speech Corpus, described in [7]. Both the training and test
utterances were hand-labeled with the seven broad phonetic
category or phoneme labels as necessary.

8.1.2. Training and Test Sets: First stage

To limit computational requirements, the fine phonetic and
broad phonetic classifiers were trained from a randomly chosen
subset of the frames from the training utterances.

Table 1 displays the distribution of tokens and {frames of each
broad phonetic category used to train the network for broad-
category segmentation. The numbers in the Fromes column
for both the training and development sets include 3000 edge-

- sampled frames, the balance being made of randomly sampled
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frames. These frames were sampled from hand labeled data in
ten languages.



Approach Features Performance
Acoustic features PLP 7Q.0%
Broad Category Pairs 75.8%
features Window 83.2%
Fine Phonetic Average H 76.2%
Maximum 81.5%
Unigram features Variation H 80.2%
Combined 82.3%
Fine Phonetic 20 pairs 74.0%
100 pairs 77.5%
Bigram features 200 pairs 79.3%
Bigram Viterbi likelihood 81.1%
100 pairs + unigram 85.5%
+ Unigram 200 pairs + unigram 86.3%

Table 3. Summary of Performance for all Approaches

Table 2 shows the number of {rames in the training and test
sets for the phonetic classifiers. The utterances in the Table
refer to stories of up to 50 seconds of extemporaneous speech
which have been handlabled at the phonemic level.

3.1.8. Training and Test Sets: Second stage

The language classifiers were trained and evaluated on only
the spontaneous speech utterances from the first 70 valid calls
in each language (a subset of the calls in the training set was
used to train the broad category and fine phonetic classifiers).
The development test set consisted of 2-6 utterances per call for
20 calls in each language. The utterances ranged in duration
from 1 second to 49 seconds with an average of 13.4 seconds.

3.2. Comparative results

Results obtained with the best classifier of each type de-
scribed above are listed in Table 3. It can be seen that the
best classifier using fine phonetic distinctions slightly outper-
forms the best classifier based on broad-category segmentation
(86.3 % vs. 83.2 %), and that the classifier using only acoustic
features is substantially inferior to these two methods.

Also, the combination of unigram and bigram features is
substantially better than either feature type individually. Of
the unigram features, the “maximum-output” feature was most
useful.

4. DISCUSSION

In going from acoustic features to broad-category features to
fine phonetic features, the inputs to our classifier become in-
creasingly imprecise (since the fine phonetic classifiers are rel-
atively unreliable, and the broad-category segmenter is also
not perfect). However, our results indicate that these imper-
fections are more than compensated for by the more detailed
information that the classifiers of lesser accuracy provide.

It is interesting to note that the combination of fine-phonetic
unigram and bigram features using a neural-network classifier
is significantly superior to the approach based on likelihood
estimation by way of a Viterbi search. This result empha-
sizes the desirability of discriminatory training; this is hardly
surprising, since it is hard to imagine a theoretically accurate
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way of computing the likelihood of utterances given a language
identity.

Several extensions of this work are now being investigated.
As was mentioned above, it is necessary to study the generality
of our results with respect to other languages; we are therefore
also comparing various approaches on the full ten-language set
in the OGI Corpus (7). In addition, the successes of the fine.
phonetic approach have prompted us to design methods which
perform even more detailed classifications in the first stage.
These methods are now being evaluated.
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