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Automatic Language Identification Using Sequential

Information of Phonemes

SUMMARY In this paper approaches to language identifica-
tion based on the sequential information of phonemes are de-
scribed. These approaches assume that each language can be
identified from its own phoneme structure, or phonotactics. To
extract this phoneme structure, we use phoneme classifiers and
grammars for each language. The phoneme classifier for each
language is implemented as a multi-layer perceptron trained on
quasi-phonetic hand-labeled transcriptions. After training the
phoneme classifiers, the grammars for each language are calcu-
lated as a set of transition probabilities for each phoneme pair.
Because of the interest in automatic language identification for
worldwide voice communication, we decided to use telephone
speech for this study. The data for this study were drawn from
the OGI (Oregon Graduate Institute)-TS (telephone speech) cor-
pus, a standard corpus for this type of research. To investigate
the basic issues of this approach, two languages, Japanese and
English, were selected. The language classification algorithms
are based on Viterbi search constrained by a bigram grammar
and by minimum and maximum durations. Using a phoneme
classifier trained only on English phonemes, we achieved 81.1%
accuracy. We achieved 79.3% accuracy using a phoneme classi-
fier trained on Japanese phonemes. Using both the English and
the Japanese phoneme classifiers together, we obtained our best
result: 83.3%. Our results were comparable to those obtained by
other methods such as that based on the hidden Markov model.
key words: language identification, phonetic transcription, tele-
phone speech, multi-layer perceptron, bigram

1. Introduction

Automatic language identification can be very useful in
worldwide voice communication networks. A telephone
interpreter (automatic or a group of humans), for exam-
ple, needs a way to identify the language being spoken.
A language identifier could then switch to an opera-
tor who can speak that language or to an appropriate
speech recognition system.

Previous work has combined the use of inherent
and. prosodic features[1]-[4]. Sugiyama[5] has relied
on long utterances to build up representative histograms
of acoustic feature vectors before classifying the spe-
cific language spoken. Recently, ergodic HMMs (hidden
Markov models) have been used by Nakagawa and other
researchers to obtain this information [6]-[10]. Differ-
ent from such frame-based approaches, phone-based or
segment-based approaches are used [9],[11]. A segmen-
tal approach, which assumes that the acoustic structure
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of languages can be estimated by segmenting speech into
phonetic categories, has been applied by Muthusamy
using broad phonetic categories[12],[13]. Zissman has
achieved higher performance[14] using an N-gram with
phoneme recognition. Berkling[15] showed that mono-
and poly-phonemes contain useful information.

Because of the interest in automatic language iden-
tification for worldwide communication networks, we
decided to concentrate on telephone speech in this study.
The data for this study were drawn from the OGI (Ore-
gon Graduate Institute)-TS (telephone speech) corpus,
which is a standard corpus for this type of research.
Some other researchers are already using this corpus [9],
[11],[14]-[16].

The underlying hypothesis of the approach detailed
in this paper is that each language has its own phoneme
structure, or phonotactics. House[17] suggested that
an approach based on phonotactics is useful. If one
can observe the sequence of phonemes, one can classify
the language easily. To extract this phoneme structure,
we use phoneme classifiers and grammars for each lan-
guage. ‘

In our approach, we used first-order Markov mod-
els, that is, bigrams or phoneme pairs to handle se-
quential information. The phoneme classifier for each
language is implemented as a multi-layer perceptron
trained on quasi-phonetic hand-labeled transcriptions.
After training the phoneme classifiers, from the gram-
mar of each language we calculate a set of transi-
tion probabilities for each phoneme pair. To investi-
gate the basic issues of this approach, two languages,
Japanese and English, were selected. In this paper, sev-
eral algorithms for language identification of speaker-
independent and text-independent language based on
telephone speech are discussed. In Sect.2, our speech
corpus and Japanese transcription are described. We de-
veloped conventions for Japanese quasi-phonetic tran-
scription and added them to the original conventions
for English. In Sect.3, we describe the phoneme clas-
sifier, which is the first stage of the system. In Sect.4,
we describe two approaches to classifying the two lan-
guages. The first result is obtained using the Viterbi
score from a front-end of each language and the second
from a combination of these two front-ends.
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Table 1 Number of callers classified by gender for each data set in OGI-TS corpus.
Language Training Development Test Final Test %
Males Females Males Females Males Females
English 33 17 14 6 16 4
Japanese 31 19 15 5 10 9
% There was a Japanese caller whose gender was unknown.
Table 2  Six utterances for each speaker.

htl Something that he/she likes about his/her hometown. (10s)

hte About the climate in his/her hometown. (105)

room Description of the room that he/she is calling from. (125)

meal Description of his/her most recent meal. (10s)

story-bt  First 45 seconds of one-minute free speech before the tone. (45s)

story-at  Last 10 seconds of one-minute free speech after the tone. (10s)

2, Speech Data Waveform S oo o |

2.1 Speech Corpus

Continuous telephone speech in English and Japanese
from the multi-language OGI-TS corpus[18] was used
for training and testing. The speech data were sampled
at 8 kHz with a 13-bit resolution. For each language,
this corpus contains 50 calls for training, 20 calls for
a development test, and 20 calls for an evaluation test.
Each call was uttered by a unique adult speaker whose
of gender is shown in Table 1. From the speech of each
person, the six utterances in Table 2 including the topic-
specific descriptions and a one-minute free speech were
chosen. The one-minute free speech was divided into
two utterances before and after the tone, which informed
the caller that the remaining time was ten seconds.

The utterances of the training data set are labeled
in two stages, word labeling and quasi-phonetic tran-
scription, to train phoneme classifiers based on neu-
ral networks. Using two stages in the automatic forced
phoneme alignment by word labeling helps to stream-
line the transcription of the phonemes. The quasi-
phonetic transcription was done by native-speaker ex-
perts, who have knowledge of phonetics and expertise
of labeling, using waveform and spectrogram as shown
in Fig. 1.

2.2 Japanese Phonetic Transcription

After Japanese utterances in the training data set are
labeled at the word level using a Japanese romaniza-
tion, the utterances are labeled at the phonemic level us-
ing a quasi-phonetic transcription. The quasi-phonetic
transcription does not include all phonetic information;
some phonetic details are added to the phonemic label-
ing scheme. This quasi-phonetic transcription is based
on Japanese phonetics [19].

The symbols for the five Japanese vowels are shown

Spectrogram fga

300ns [£G00ms. {00 200ns 130088 Wons I o]

Quasi- pome . [0 fons | 12008 o L e (L5

Phonetic
Transcription n| iy s uw (n|d ey m aa s

Fig. 1  Waveform and spectrogram for the quasi-phonetic tran-
scription.

Table 3  Symbols used for quasi-phonetic transcription of the
five Japanese vowels.

Quasi- Tongue- Tongue- Aperture
Phonetic  height position

Symbol

/iy/ high front unrounded
/ey/ mid front unrounded
/aa/ low central unrounded
Jow/ mid back rounded
Juw/ high back unrounded

in Table 3. These are nominally a subset of English
vowels, but the pronunciation is different. In particular,
/ow/ and /ey/ are not diphthongs as in English. These
symbols are used because the initial vowel is close to the
Japanese vowel. So the symbols we will use are these:
/aa/ for [a], /ey/ for [e], /iy/ for [i], /ow/ for [o],
and /uw/ for [ur]. The bracketed characters are those
used in the IPA (International Phonetic Alphabet).
The mapping from acoustic sounds of Japanese
consonants to symbols which we are using is shown in
Table 4. Phonetically Japanese has more sounds, but
some allophones are represented with one symbol. For
example, both the common voiceless bilabial fricative
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Fig. 2 Seven averaged feature vectors computed for sampled frames (solid boxes).

Table 4  Correspondence between quasi-phonetic transcription
and IPA for Japanese consonants.

Quasi- International Quasi- International
Phonetic  Phonetic Phonetic  Phonetic
Symbol Alphabet Symbol Alphabet
/p/ [p] /sh/ L]

/t/ [t] /hh/ [h].[A].[¢]
/k/ [k] /ts/ [ts]

/b/ [b] /ch/ (]

/d/ [d] jdz/  [dz)[z]
/g/ [e] /ib/ CARKA
/m/ [m] /rx/ [«1.[x],[1]
/n/ [(nl[nLnLIN] | /w/ [w]

/f/ [f1.[] /y/ [j]

/s/ [s]

[$] and the rarer voiceless labio-dental fricative [f] are
represented with /f/. Likewise, most /rx/ are the flap
[¢] while some are the voiced retroflex stop [d] at the
word-initial position or liquid-like [r],[1] in rapid or
emphasized speech. Some /hh/ sounds are very close
to the German “ich-Laut” [¢]. There are also palatal
nasals [n], velar nasals [y] and uvular nasals [N] in
Japanese, but sometimes these are allophones and la-
beled as /n/. In addition, the voiced alveolar fricative
[z] and affricate [dz] are allophones and are labeled as
/dz/; voiced palato-alveolar fricative [3] and affricate
[&] are allophones and are labeled as /jh/. The En-

glish symbol set has a voiceless palato-alveolar affricate
~ [4] but not a voiceless alveolar affricate [ts], which is
added for Japanese.

3. Phoneme Classification

This section describes a phoneme classification by an
MLP (multi-layer perceptron) of the system. Features
are derived from the signal in order to perform a frame-
based phoneme classification of the incoming speech
signal. Frame-based phoneme classification provides a
score for a set of phonemic labels which can approx-
imate the probability of a phoneme occurring at the
input level.

3.1 Feature Generation

A seventh-order Perceptual Linear Predictive (PLP)
model yielding 8 coeflicients (including one for energy)

was computed on a 10 ms interval of speech, time-
shifted every 6 ms. The technique of PLP uses basic

Table 5  Division of frames for phoneme classifier into training
and test sets.

Train Test
Utterances  Utterances
(Frames) (Frames)
English Phonetic 50 20
Classifier (80502) (7441)
Japanese Phonetic 45 10
Classifier (23546) (5608)

concepts from the psychophysics of hearing while main-
taining a low dimensional representation of speech [22].
This approach has been proven to be useful in speaker-
independent automatic speech recognition [20].

For the ith frame with a feature vector f;, seven
averaged feature vectors were computed as follows:

(fic1a + fic1s + fi12)/3,
(fi—s + fi—r + fize)/3,
(fi—s + fica + fic1)/3,
Jis

(fits + fixe + fir1)/3,
(fivs + fixr + five)/3,
(fir1a + fivrs + fir12)/3.

The seven averaged feature vectors are taken from 7 re-
gions spanning a 178 ms window centered on the frame
fi to be classified as shown in Fig.2. The solid boxes
are sampled and the dashed boxes are skipped. These
features were empirically derived to capture the contex-
tual information in the vicinity of each frame[21]. The
objective was to provide substantial contextual informa-
tion about the chosen frame to the network.

Seven averaged feature vectors (56 averaged PLP
coefficients) which include seventh order PLP coeffi-
cients and energy are given as input to each of the
phoneme classifiers[23]. The PLP coefficients are nor-
malized between —1 and 1 to decrease the probabil-
ity that the MLP will converge to an undesirable local
minimum. Due to computational complexity, the sys-
tem was trained from a randomly chosen subset of the
frames from the training utterances shown in Table 5.

3.2 Training for MLP

For both languages, classification is performed by a
fully-connected, three-layer, feedforward network that
assigns phonemic category scores to each 6 ms time-
frame. The labels provide a quasi-phonetic level of de-



708

IEICE TRANS. INF. & SYST., VOL. E78-D, NO. 6 JUNE 1995

Table 6 Division of English and Japanese utterances for language classifier into training

and test set. (The average length of the utteranc

es is 13.5 seconds.)

Train Test
Utterances  Avg. [s] Utterances Avg. [s]
English Language
Classifier 279 13.7 115 13.6
Japanese Language
Classifier 278 13.5 112 13.3

English

Phoneme
Classifier
(MLP)

Speech SignalWi

Japanese
Phoneme
Classifier
(MLP)
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Fig. 3 Block diagram of the system including an MLP (multi-layer perceptron) and

Viterbi search.

scription in which most allophonic variations are ig-
nored. Some similar categories are combined: /ih/-
/ix/, /ah/-/ax/, [aa/-/ao/, /m/-/em/, /n/-/en/-/ng/-
/nx/, /sh/-/zh/, and /hh/-/hv/ in English. These la-
bels are a slightly modified version of the labels used
in the public-domain TIMIT data base[24]. Finally,
39 categories including one for closure are used for En-
glish phonemes:

/el/s /iy/, [in/, Jey/, /ae/, [eh/,/ah/,/uw/,
/ub/./ow/./aw/,/aa/,/ay/, [oy/,/et/, [ao-1/,
/t/s /s /y/, [/w/, /hb/,/m/, /n/, [s/,
/z/, /sh/, jth/, jdn/./dx/,/f], /v/, [eh/,
/iu/s/o/s /s /%[ /b, /) g

The English network has 56 input nodes, 48 hidden
nodes, and 39 output nodes, one for each of the En-
glish phonemes. For Japanese phonemes, 25 categories
including one for closure are used:

[el/,/iy/, [ey/./uw/./ow/,[aa/./tX/./y/,
/w/,/bb/,/m/, /n/, /s/, /sh/,/t/, [ch/,
?jh//,/P/, /t/s [/ /s /d), [g/s [dz/,
ts/.

The Japanese network has 56 input nodes, 48 hid-
den nodes, and 25 output nodes, one for each of the
Japanese phonemes. The number of hidden nodes was
determined experimentally.

The networks were trained using back-propagation
with conjugate gradient optimization[25]. Training
continued until the performance of the network on the
test set peaked. Classification performance was evalu-
ated on the frames in the test set given in Table 5. The
phoneme classifier performed with a frame-by-frame ac-
curacy of 48.0% for English and 44.0% for Japanese.

4. Language Classification

4.1 Training for Language Identification

We tried two approaches to language classification, one
comparing the Viterbi score of each language, and an-
other using both classifiers. In each case, the training
and development test data in Table 6 was used. Fig-
ure 3 shows an example of the sequence of phonemes
after the Viterbi search.

. The English and Japanese networks was both used
for input from either language and the likelihood from
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the Viterbi search for each language were compared.
The frame-by-frame outputs of the phoneme classifier
were converted into a time-aligned sequence of phoneme
labels using a Viterbi search which maximizes

Li(j) = max|Li—1(i) +log[P(p;lp:)] + o(d)
+log[os(j)], ey

where L.(j) is the logarithmic likelihood of phoneme
p; at frame ¢, P(p;|p;) is the transition probability from
phoneme p; to p;, and o:(j) is the activation of phoneme
p; from the phoneme classifier at frame ¢t. The initial
condition is given by

Lo(i) = logm(i). - (2

For this experiment, 7 (¢) were set to 1.0 for all 5. To
control the duration of phonemes, «(d) was added to
the Eq. (1) to impose a penalty. The «(d) is a function
of the duration d of the current phoneme p, as follows:

_ 0 dmin(j) édgdmax(j)7
o(d) = { A otherwise, 3)

where dmin(7) and duyax () are the minimum and max-
imum duration for the phoneme p; and A is a negative
number. For each language, the grammar, or transi-
tion probability P(p;|p;) for all i and j was estimated
from the training sets. To get the transition probability
P(p;ip;), a Viterbi search of the training data phoneme
outputs was performed under the condition that the du-
rations for that training data set be reasonable. We
allowed the duration to be from 3 to 300 frames for
all phonemes (dyi, = 3, dpnax = 300); these number
were obtained empirically. We employed the sequence
of phonemes from all training utterances.

4.2 Results for Language Identification

We evaluated our system in two steps. We first report
results from the Viterbi score of each phoneme classi-
fier, then we report results using both classifiers. We
also compared our results with reported results which
used other techniques.

For testing the performance, a second Viterbi
search was done under the condition set by the bigram
using P(p;|p;) for each language. In a preliminary ex-
periment, the performance of the language identification
With diin(7) and dmax(j) for each phoneme p; obtained
from all training utterances was 0.4% higher than that
with the fixed dmin(7) and dpyax(j) for all phonemes.
We confirmed that the minimum and maximum dura-
tion influence the accuracy very little. Therefore, the
condition of duration was the same as for the training
data set, that is, the allowed duration was from 3 to
300 frames for all phonemes (dmin = 3, dymax = 300).
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Table 7  Results of language classification between English and
Japanese using Viterbi score.

‘Phoneme Classifier Accuracy
English 81.1%
Japanese 79.3%
English and Japanese 83.3%

Table 8 Proposed method compared to others.

Approach Corpus  Accuracy
Our method whole set 83.3%
Broad phonetic category % whole set 83.6%
Our method story-bt 88.6%
HMM using

Gaussian mixture s % story-bt 82.9%

% Muthusamy [13]
% % Zissman [14]

The difference between the number of categories in En-
glish and that in Japanese introduces a bias for each
language. In practice, the logarithmic likelihood was
scaled by a factor f3, chosen to give optimal training-set
performance, in order to reduce the influence. Finally,
likelihood L was given by

L:ﬂmJaXLT(j), 4)

where T indicates the final frame. The factor 8 was
0.99813 for an English phoneme classifier and 1.00360
for a Japanese phoneme classifier. The classifier as-
signed an incoming utterance to the language with the
largest likelihood according to this expression.

The results using the Viterbi score are shown in
Table 7. When we used an English phoneme classi-
fier, we obtained 81.1% of accuracy. When we used a
Japanese phoneme classifier, we obtained 79.3% of accu-
racy. After combining those two outputs of likelihood
from both classifiers, we obtained 83.3% of accuracy.
This shows that the combination of the two classifiers
has a better performance because the system works with
more information.

To compare our approach to that of others, we
used the same OGI-TS corpus. Two other approaches
were tested and compared to ours; the corpus and re-
sults are shown in Table 8. One other approach (by
Muthusamy [12]) is based on a broad phonetic cate-
gory using both statistical and sequential features. The
results of our approach compare favorably to the 83.6%
recognition rate achieved with the phonemic approach
using bigram information. The second approach tested
is HMM, which recently is commonly used for speech
recognition and other speech processing. The method
of Zissman[14], the results based on the HMM using
Gaussian mixture were 82.9% for 45-second story-bt ut-
terances. Under the same conditions, for story-bt utter-
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ances our method gave comparable results. For the same
utterances we obtained 88.6% which was 5.3% higher
than what we obtained for the whole corpus. This was
probably caused by the difference of the average length
of those two sets of the utterances, that is, 13.5 seconds
for the whole corpus and 48.4 seconds for the story-bt
utterances. ‘

5. Conclusion

Some approaches for language identification based on
the sequential information of phonemes have been de-
scribed. We focused on telephone speech in two lan-
guages, Japanese and English, from OGI-TS corpus.
This corpus and our Japanese transcription were also
described. The phoneme classifier for each language
is implemented as an MLP, trained on quasi-phonetic
hand-labeled transcriptions. The phoneme classifier
performed with a frame-by-frame accuracy of 48.0% for
English and 44.0% for Japanese. The performance is not
high enough and it was probably due to the highly vari-
able conditions, especially the telephone line and the
variety of speakers. Zissman [7] showed that the can-
cellation of the channel effect was highly useful. The
improvement of the performance of the phoneme classi-
fiers is the next problem.

After training the phoneme classifiers, a set of tran-
sition probabilities for each phoneme pair are calcu-
lated for each language. Experimental results were ob-
tained using the Viterbi score from separate front-ends
and from both front-ends using bigrams. The approach
using the Viterbi score has low computational com-
plexity because it only requires the likelihood from the
Viterbi search. We obtained 83.3% as our best perfor-
mance for the whole corpus and 88.6% for the story-bt
corpus. Compared to other methods, our results were
comparable.

In the future we intend to test these various ap-
proaches on. other languages drawn from the ten-
language OGI-TS corpus. The additional complexity
needed to extend the number of languages to be identi-
fied, calls for a system with a simpler structure. For sim-
plification perhaps only one phoneme classifier could be
used for all languages. With more languages, we would
like to consider using separate grammar and phoneme
classifiers for each language.
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