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ABSTRACT
We report on the effect of band-pass filtering of the time tra-
jectories of spectral envelopes on speech recognition. Sev-
eral types of filter (linear-phase FIR, DCT, and DFT) are
studied. Results indicate the relative importance of different
components of the modulation spectrum of speech for ASR.
General conclusions are: (1) most of the useful linguistic
information is in modulation frequency components from
the range between 1 and 16 Hz, with the dominant compo-
nent at around 4 Hz, (2) it is important to preserve the phase
information in modulation frequency domain, (3) The fea-
tures which include components at around 4 Hz in modu-
lation spectrum outperform the conventional delta features,
(4) The features which represent the several modulation fre-
quency bands with appropriate center frequency and band
width increase recognition performance.

1. INTRODUCTION

Temporal processing of time trajectories in the logarithmic
spectrum domain is becoming a common procedure in auto-
matic speech recognition (ASR). Cepstral mean subtraction
(CMS) [1] suppresses the DC components of the time trajec-
tories of the cepstrum to alleviate the effects of the convolu-
tional noise introduced, e.g., by the frequency characteris-
tics of the communications channel (additive in logarithmic
spectrum or cepstrum). In delta features [2], components
of the modulation spectrum around 10 Hz are typically en-
hanced while lower and higher components are suppressed.
RelAtive SpecTrAl processing (RASTA) [3] passes compo-
nents of the modulation spectrum between about 1 and 12
Hz. Such processing effectively modifies the so-called mod-
ulation spectrum of speech [3].

Perceptual experiments indicate that some components
of the modulation spectrum are more important for the in-
telligibility of speech than others. This fact was also con-
firmed in Japanese [7] and English [9]. Drullman et al. [5, 6]
concluded that low-pass filtering below 16 Hz or high-pass
filtering above 4 Hz does not appreciably reduce speech in-
telligibility. Arai et al. [7] extended Drullman’s research

[5, 6] to the logarithmic domain and applied not only low-
pass or high-pass filters but also band-pass filters. The re-
sults of these experiments suggest that most of the informa-
tion necessary to preserve intelligibility is the range between
1 and 16 Hz.

Nevertheless, the relative importance of various compo-
nents of the modulation spectrum is not well known. There-
fore Kanedera et al. [14] investigated the relative impor-
tance of different components of the modulation spectrum
of speech. These results indicate that most of the useful lin-
guistic information is in modulation frequency components
from the range between 1 Hz and 16 Hz, with the domi-
nant component at around 4 Hz. In a noisy environment, the
range below 1 Hz is not contributing useful information and
the recognition performance can be typically improved by
eliminating it from the recognition process. Such trends of
the relative importance of modulation frequencies were un-
changed despite changes of recognizers and features used.

2. RELATIVE IMPORTANCE OF MODULATION
FREQUENCIES

This section describes work on the relative importance of
modulation frequencies in ASR. The experimental system is
shown in Figure 1. It consists of a module which extracts
logarithmic spectrum, one which filters time trajectories of
components of the logarithmic spectrum, and of a pattern
classification module which yields the final recognition re-
sults. The recognition accuracy p(fL; fU) of the system is
a function of the lower cutoff frequency fL and the upper
cutoff frequency fU of the band-pass filter.

To derive some notion of the relative importance of var-
ious modulation frequencies, we defined the contribution
I(fL; fU) to recognition performance resulting from inclu-
sion of the range between fL and fU by

I(fL; fU ) =
1

N � 1

hX
l<fL

fp(l; fU) � p(l; fL)g

+
X
u>fU

fp(fL; u)� p(fU ; u)g
i
;

(1)
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Figure 1: Block diagram of the ASR system with temporal
processing.

where N is the number of ranges of modulation frequency
[14].

3. AUTOMATIC SPEECH RECOGNITION
EXPERIMENTS

3.1. Effect of filter

In the previous work [14], long linear phase FIR filters were
used to obtain the sharp characteristics in modulation fre-
quency domain. However long non-causal filter causes long
time delay. In practical ASR, short filters are desirable to re-
duce the time delay introduced by the filtering. Here we in-
vestigated the relative importance of modulation spectrum
using DFT.

Figure 2 shows normalized contribution to recognition
performance for DFT filtering with Hamming window. The
horizontal axis shows center modulation frequency for each
DFT filter. In these experiments, the English words database
shown in Table 1 were used. The system was trained on
clean speech, while the test data were degraded by convo-
lutional noise and additive background noise. To compare
the different cases, contributionsare normalized by the max-
imum value. The features were 8th order PLP and logarith-
mic energy. The HMM tool kit (HTK) was used to train a
Gaussian mixture HMM. In this case, each of the 13 words
were modeled by 8 states (including a nonemitting initial
and final state), and there were 2 mixtures per states. Co-
variance matrices for each mixture were assumed to be di-
agonal.

Although modulation frequency characteristics of the
filters are quite different, trends in the relative importance of
modulation spectrum components are similar as in the ear-
lier experiments. The range around 4 Hz is useful both in
clean environment and in noisy environment. In noisy envi-
ronment, the range below 2 Hz or above 10 Hz can be less
important. In particular, the range below 1 Hz degrade the
recognition accuracy.

Table 1: Conditions of word recognition experiment.

13 words
Task Bellcore digit database

(0–9, zero, oh, yes, no)

Training
150 speakers
(75 males and 75 females)

Test
50 speakers
(25 males and 25 females)

Sampling frequency 8 kHz
Window Hamming (25 ms)
Frame period 12.5 ms

Features
8th order PLP and
logarithmic energy

3.2. 2-D cepstrum using selected part of the modulation
spectrum

The Fourier transform of the time trajectory of cepstrum has
become known as 2-D cepstrum [11, 12]. Imai and Kitamura
[11] used a 2-D cepstrum derived for the whole word. Mil-
ner [13] used a 2-D cepstrum derived form a relatively short
segments of speech on frame-by-frame basis. We used much
longer temporal window compared to [13] and aimed at only
some selected parts of the modulation spectrum. Thus, sim-
ilarly to [13] we employ harmonic base functions on frame-
by-frame basis but unlike [13] we extract much lower fre-
quency components of the modulation spectrum, and use
only some selected ones. In some respects, our temporal
processing is more reminiscent to computation of so called
dynamic features of speech [2] where Hamming-window
weighted harmonic functions are used in place of polynomi-
als used in deriving the dynamic features.

Table 2 shows a comparison between conventional delta
features and the 2-D cepstrum using selected part of the
modulation spectrum. In clean environment, the test envi-
ronment was the same as the training environment, while the
test data were degraded by additive noise (10 dB) and con-
volutional noise (HPF, 6 dB/oct), i.e., mismatched environ-
ment, in noisy environment.

The 2-D real cepstrum was derived form each time tra-
jectory of 8th order PLP cepstral coefficients (including log-
arithmic energy), using DCT on 16 points of the time trajec-
tory (i.e. using 32-points DFT after taking 16-points to cre-
ate even symmetric sequence weighted by Hamming win-
dow). The 2-D complex cepstrum was derived from 32-
points of time trajectory weighted by Hamming window.
Only second and third components of both real and complex
cepstra were used. These components correspond to 5 and
7.5 Hz center frequency, and cover the range between about
3 and 9.5 Hz in modulation frequency.

The number of features was 18 (2 components� 1 (only
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Figure 2: Normalized contribution to recognition perfor-
mance for DFT filtering.

real part) � 9 original static features) for using DCT, and
36 (2 components � 2 (real and imaginary parts) � 9 orig-
inal static features) for using DFT. When combining with
9 static features, the number of feature was 27 for the real
(DCT-based) cepstrum and 45 for the DFT-based complex
cepstrum.

These results show that 2-D cepstrum can significantly
outperform conventional delta features, especially in mis-
matched environment. The results using DFT which uses
32-points temporal window (400 ms) is better than those us-
ing DCT which has 16-points temporal window (200 ms).

3.3. Effect of phase

Table 3 shows the effect of including the phase. The condi-
tions were the same as those in Section 3.1. The results of
experiments using only absolute values are worse than re-
sults from experiments which used both real or imaginary
parts. From these results we conclude that it appears to be

Table 2: Recognition results of conventional delta features
and 2-D cepstrum using selected part of the modulation
spectrum.

Feature
Static Feature WER [%]

feature size Clean Noisy

�;�
2 yes 27 1.7 21.7

2-D cepstrum (DCT) yes 27 0.9 12.8
2-D cepstrum (DFT) yes 45 0.9 4.6

�;�
2 no 18 2.8 28.8

2-D cepstrum (DCT) no 18 4.2 4.8
2-D cepstrum (DFT) no 36 3.4 3.5

Table 3: Recognition results in various phase conditions.

Feature
Static Feature WER [%]
feature size Clean Noisy

2-D cepstrum (DFT) yes 45 0.9 4.6
Real part yes 27 1.5 14.2

Imaginary part yes 27 1.1 10.3
Absolute values yes 27 5.2 24.2

2-D cepstrum (DFT) no 36 3.4 3.5
Real part no 18 7.7 10.5

Imaginary part no 18 8.0 11.8
Absolute values no 18 22.5 38.8

important to use the phase information of the modulation
spectrum.

3.4. Multi-resolution ASR

The results in Section 3.1 show that most of the useful lin-
guistic information is in modulation frequency components
in the range between 1 and 16 Hz, with dominant contribu-
tions coming from the range between 2 and 10 Hz.

Table 4 shows the results of several combination using
DFT with 16-points, 32-points, and 64-points. The condi-
tions were the same as those in Section 3.1. For each res-
olution, we selected the components in the range between
2 and 10 Hz. In the case (g), second components using
64-points DFT and second and third components using 32-
points DFT were used. These components correspond to
2.5, 5, and 7.5 Hz in center modulation frequency respec-
tively. These modulation frequencies would correspond to
roughly word rate, syllabic rate and demi-syllabic rate re-
spectively. Resulting improvements indicate the potential
of multi-resolution approach in which several information
streams derived from the speech signal using various lengths
of the temporal windows for deriving the modulation spec-
trum based features are combined.
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Table 4: Recognition results using multi-resolution.

DFT
16 32 64

Feature WER [%]
Case

size size Clean Noisy

1 — — 18 2.4 24.9 (a)
Order — 2, 3 — 36 3.4 3.5 (b)

of — — 2–6 90 2.8 2.3 (c)
DFT 1 2, 3 — 54 1.7 6.2 (d)

compo- — 2, 3 2–6 126 2.0 2.5 (e)
nents 1 2, 3 2–6 144 1.5 2.2 (f)

— 2, 3 2 54 1.4 1.9 (g)

4. CONCLUSIONS

Results indicate that most of the useful linguistic informa-
tion is in modulation frequency components in the range
between 1 and 16 Hz, with dominant contributions coming
from the range between 2 and 8 Hz. These observations are
quite independent of the particular character of filters ap-
plied in the modulation spectrum domain.

Results also indicate that it is important to preserve the
phase information of the modulation spectrum. The features
which include components of the modulation spectrum from
around 4 Hz outperform the conventional delta features, es-
pecially in mismatched training and test environments. Us-
ing several modulation frequency bands which correspond
to word rate, syllabic rate, and demi-syllabic rate, appears
to be beneficial.

Finally, the results show that it may be useful to use some
selected parts of the modulation spectrum in multi-stream
ASR.
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