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abstract In this paper, we apply an Independent Com-
ponent Analysis (ICA) algorithm with pre-processing
and post-processing techniques to decompose synthe-
sized Magnetoencephalography (MEG) data. The be-
havior of our data set is similar to auditory evoked fields
(AEFs). The main advantage for analyzing our synthe-
sized data set is the location of evoked responses are
known. The analyzed results are presented to illustrate
the effectiveness and high performance both in source
decomposition and source localization.

1. Introduction

A novel topic applying ICA to MEG data has been
studied recently in order to determine the behavior and
localization of brain sources [1]. During MEG signal
detection, spontaneous and environmental noise may
have considerable effect on recorded data, and there-
fore should be removed or considerably reduced. In this
paper, we applied an additive noise reduction and opti-
mizing dimensionality technique, Cao et al. developed
[1]. In our procedure, for pre-processing, MEG data
are first decomposed into uncorrelated signals with the
reduction of additive noise and optimization of dimen-
sionality. In the stage of source separation, decorrelated
source signals are further decomposed into independent
components by applying the joint approximate diagonal-
ization of eigenmatrices (JADE) algorithm [2]. In the
post-processing stage, we perform a source localization
procedure to seek a single-EF map of decomposed indi-
vidual components [1].

2. Method of data analysis

2.1. Time domain ICA

Based on the principle of MEG measurement, the
problem can be formulated as

x(t) = As(t) + e(t), (1)

where x(t) = [21(t), -,z (t)]T represents the trans-
pose of m observations at time ¢t. Each observa-
tion x;(t) contains m common components (sources)
s(t) = [s1(t), -, sn(t)]T and a unique component (ad-
ditive noise) which is included in the vector e(t) =
le1(t), -, em(t)]T. AER™*™ = (a;;) can be represented
by a numerical matrix whose element a;; can be simply
considered as a quantity related to the physical distance
between the i-th sensor and the j-th source.

At first, we describe the robust pre-whitening tech-
nique [1], Cao et al. developed PCA algorithm with ap-
plying JADE to study high dimensional MEG data. The
technique is very capable of reducing additive noise and

optimizing dimensionality. In this technique, we can ob-
Ao —1 N —1
tain the transform matrix as Q = [AT®¥ A 7'AT® |

where A and ¥ are estimates of A and ¥ = EE”/N
respectively. Using this transform matrix, a new data

vector
z(t) = Qx(t) (2)

is obtained in which the power of noises, mutual cor-
relation and dimensionality have been reduced. After
pre-processing, the decomposed sources yeR™ can be

obtained as
y(t) = Waz(t), (3)

where WeR™ " is termed the demixing matrix which
can be computed by using the JADE algorithm. JADE
proposed in [2] can be used in the rotation procedure.
Next we describe the post-processing technique [1] to
project the decomposed data onto the sensor space. Us-
ing A and W with y, we can obtain the virtual sensor
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Figure 1: An example for data synthesization. (top)

sensor-SL.24 on triall, (bottom) sensor-SL44 on triall

signal contributed from multiple sources or an individual
source as

x(t) = AW ly(¢). (4)

2.2. Frequency domain ICA

When signals are mixed in convolutive environments,
the model can be described as

x(t) = hxs(t) + e(t) (5)
z(t) = Q = x(t) (6)
y(t) = W z(t), (7)
where heR™*" = (h;;) is the impulse response from

source j to sensor ¢ and the * is the convolution operator.
Because it is possible to convert a convolution mixture
in the time domain into an instantaneous mixture in the
frequency domain, frequency domain BSS is effective for
separating signals mixed in a reverberant environment.

Using a Fourier transform for (5-7), the model can be
described as

X(f) =HS(f) + E(f) (8)
Z(f) = QX(f) (9)
Y(f) = WZ(f), (10)

where X(f) = [X1(f), -+, Xm(f)]T is the observed sig-
nal in the frequency domain, Z(t) = [Z1(f), -, Zn(f)]*
are non correlative components by applying the robust
pre-whitening technique and Y (f) = [Y1(f), -, Yu(f)]¥
is the estimated source signal by applying ICA.

3. Results for analyzing MEG data

3.1. AEFs like Synthesized MEG Data
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Figure 2: Result for averaged MEG data

In this subsection, we describe Auditory Evoked Fields
(AEFs) like synthesized MEG data, used for simula-
tion. The data is synthesized an artificial signal from
two EFs (Fig. 1(left)) and the evoked-less MEG data
(Fig. 1(middle)). The sampling frequency is 250 Hz,
and observation trial time is 0.5 seconds per trial. Peak
times at source signals are 0.25s for EF1 (Fig. 1(top))
and 0.27s for EF2 (Fig. 1(bottom)). The EF1 is located
at [z, y, z]s;, = [10, 50, 50](mm) and The EF2 is lo-
cated at [z, y, z]s, = [—40, 40, 40](mm) , where a head
model presupposes a sphere with a radius of 75mm (see
Fig. 4)). We take an average of 100 trials for data anal-
ysis, and we obtain an averaged data as shown in Fig. 2.
Here the horizontal axis expresses time and the vertical
axis expresses the output intensity of a sensor.

3.2. Results for Time domain ICA

3.2.1. Results for Data Decomposition

First we will demonstrate the source decorrelation ap-
plying time domain robust pre-whitening technique to
the MEG data shown in Fig. 2. The results is shown in
Fig. 3(a). In this simulation, the number of sources is
assumed to be n = 4. Similar results were obtained for
other conjectured numbers of sources. Using a 125-point
short time Fourier transform for Fig. 3(a), we obtain
these frequency contents shown in Fig. 3(b). Apply-
ing this technique, non correlative components are suc-
cessfully extracted. z; has a peak time at 0.27s, so it’s
considered a source signal from EF2. 29 has a high fre-
quency at 50 Hz which may have been effected by electri-
cal power interference. zs is a typical a-wave component
of 10Hz. z, is considered a component mixed a source
signal from EF1 and environment interference, which is
incapable of being separated enough.

Although the robust pre-whitening technique can be
used to reduce the additive noise and optimize dimen-
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Figure 3: (a)Results for time domain pre-
whitening, (b)Frequency contents of (a), (c)Results
for time domain ICA, (d)Frequency contents of (c)

sionality, it is insufficient to obtain independent sources,
since some additional parameters must be further esti-
mated. Applying time domain ICA to these new ob-
servations shown in Fig. 3(a), more clear signals have
been extracted (Fig. 3(c)). Using a 125-point short time
Fourier transform for Fig. 3(c), we obtain Fig. 3(d). ys
and yo are practically considered z; and zo respectively.
y1 has a peak time at 0.25s, so it’s considered a source
signal from EF1. z4 is considered environment interfer-
ence, whose power is reduced by the taking average.

This result illustrates that the estimate AW~=1 ob-
tained by using ICA with the robust pre-whitening tech-
niques approximates the true matrix A more accurately
than the estimate A obtained by using only the pre-
whitening technique.

3.2.2. Results for Data Localization

In this subsection, we first demonstrate the source
Localization described in Section 2. We applied the
source localization to 3 types of decomposed data (y1,
Y3, Y1 + y3), projecting those decomposed signals onto
the sensor space using Eq. (4).

Next we applied the standard spatio-temporal dipole
fitting routine to the pre-analyzed MEG signal and those
virtually measured signals. Applying this routine, we
can obtain estimated EFs locations. Furthermore using
the next equation about the distance between true EF
locations [z, y, z| and estimated EF locations [#, §, Z]
as

r=+\@—22+y—92+ (27 (11)

Figure 4: 3D visualization of EF location and the dis-
tance between the estimated EF and the true EF.

Table 1: The estimated EF location and the distance
from true location applying time domain ICA [mm]

EF1 T U z r

averaged data 5.6 | 46.5 | 48.1 | 5.96
projecting 1 10.8 | 47.7 | 50.9 || 2.56
projecting y1 + y3 7.7 | 45.8 | 50.8 || 4.84

EF2 7 g | 2 r

averaged data -42.1 | 37.8 | 44.6 || 5.52
projecting ys -37.1 | 37.0 | 36.3 || 5.50
projecting y1 + ys || -43.4 | 36.6 | 41.7 || 5.17

we can compare the results derived by the propose
method with the pre-analyzed data. Here [z, y, z]s, =
[10, 50, 50] and [z, y, z]s, = [—40, 40, 40] (see Fig. 4).

First we will demonstrate the results about EF1.
The estimated EF location at the pre-analyzed data is
[Z, 9, 2]&¢ = [5.6, 46.5, 48.1], so the distance from
true EF location has become r%"¢ = 5.96 mm. On
the other hand, at the virtually measured signal pro-
jected the decomposed signal y1, the estimated EF lo-
cation is [#, ¢, Z]% = [10.8, 47.7, 50.9], and the
distance has become r@s’ll = 2.56 mm ( smaller than
r$’¢). At the virtually measured signal projected de-
composed signals y; + y3, the estimated EF location is
[z, 7, 2};’1‘”’3 = [7.7, 45.8, 50.8], and the distance has
become 7% ¥ = 4.84 mm (Tab. 1).

Next we demonstrate results about EF2. The
estimated EF location at the pre-analyzed data is
[Z, 9, 2]&°¢ = [-42.1, 37.8, 44.6], so the distance from
true EF location ( [z, vy, z]ppz = [—40, 40, 40] )
has become rZ’¢ = 5.52 mm. On the other hand, at
the virtually measured signal projected the decomposed
signal ys, the estimated EF location is [, gy, 2]% =
[-37.1, 37.0, 36.3], and the distance has become ri’; =
5.50 mm. At the virtually measured signal projected de-
composed signals y; + y3, the estimated EF location is
[, §, 2]%7Y = [—43.4, 36.6, 41.7], and the distance
has become r?;+y3 = 5.17 mm (see Tab. 1).

Comparing the results derived by the proposed
method with the results for pre-analyzed data, we can
conclude that the proposed algorithms work very effi-
ciently, and the performance is better than that of the

pre-analyzed results.
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Figure 5: Frequency contents of averaged MEG data

3.3. Results for Frequency domain ICA

3.3.1. Results for Data Decomposition

In this subsection, we demonstrate the source de-
compositions by frequency domain robust pre-whitening
technique and frequency domain ICA. At first, applying
a 125-point short time Fourier transform to the averaged
MEG data shown in Fig. 2, we obtain the frequency con-
tents of the averaged MEG data shown in Fig. 5. The
results of pre-whitening and ICA are shown in Fig. 6(a)
and (c) respectively. Using a 125-point Inverse Fourier
transform for Fig. 5(a) and (c), we obtain these time
contents as shown in Fig. 6(b) and (d).

The results of frequency domain pre-whitening prac-
tically correspond with the results for time domain pre-
whitening. At the results for ICA, y; has a peak time
at 0.25-0.27 ms, so it’s considered the component mixed
a source signal from EF1 and a source signal from EF2.
yo is a signal effected by electrical power interference at
50 Hz. ys has a frequency at 10 Hz, so it’s considered
a typical a-wave content. z4 is considered environment
interference, its power is reduced by taking its average.

3.3.2. Results for Data Localization

We applied the source localization to the decomposed
data y1, projecting this decomposed signal onto the sen-
sor space using Eq. (4). Next we applied the standard
spatio-temporal dipole fitting routine to the virtually
measured signals (see Tab. 2). Let us first demon-
strate the result about EF1. The estimated EF loca-
tion at the virtually measured signal projected the de-
composed signal y; is [#, §, 2] = [10.1, 53.4, 51.24],
and the distance from true EF1 location has become
r%' = 3.65 mm . About EF2, the estimated location

S1

is [#, 9, 2]% = [—40.9, 41.25, 40.44], and the distance

S
has become 27“3;; = 1.61 mm (see Tab. 2).

|

eweney () Time (s2)

Figure 6: (a)Results for frequency domain pre-
whitening, (b)Time domain contents of (a), (c)Results
for frequency domain ICA, (d)Time domain contents of

(©)

Table 2: The estimated EF location and the distance
from true location applying frequency domain ICA [mm|]

T i z r
EF1 || 10.12 | 53.43 | 51.24 || 3.65
EF2 || -40.91 | 41.25 | 40.44 | 1.61

Comparing the results for time domain ICA with the
results for frequency domain ICA, Time domain ICA is
more effective at data decomposition. At data localiza-
tion, in contrast, Frequency domain ICA is more effec-
tive.

4. Conclusions

In this paper, we analyzed AEF like synthesized MEG
data applying proposed method. The analyzed results
are presented to illustrate the effectiveness and high per-
formance both in source decomposition and source lo-
calization. In further works, we will develop the ICA
algorithm for not averaged single-trial data analysis.
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