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Visualization of Brain Activities of Single-Trial
and Averaged Multiple-Trials MEG Data

Yoshio KONNO?), Student Member, Jianting CAO'f, Takayuki ARAIT,

SUMMARY  Treating an averaged multiple-trials data or
non-averaged single-trial data is a main approach in recent topics
on applying independent component analysis (ICA) to neurobi-
ological signal processing. By taking an average, the signal-to-
noise ratio (SNR) is increased but some important information
such as the strength of an evoked response and its dynamics will
be lost. The single-trial data analysis, on the other hand, can
avoid this problem but the SNR is very poor. In this study, we
apply ICA to both non-averaged single-trial data and averaged
multiple-trials data to determine the properties and advantages of
both. Our results show that the analysis of averaged data is effec-
tive for seeking the response and dipole location of evoked fields.
The non-averaged single-trial data analysis efficiently identifies
the strength and dynamic component such as a-wave. For deter-
mining both the range of evoked strength and dipole location, an
analysis of averaged limited-trials data is better option.

key words: magnetoencephalography (MEG), robust pre-
whitening technique, independent component analysis (ICA),
source localization

1. Introduction

Many researchers have applied ICA to electroen-
cephalographic (EEG) or magnetoencephalographic
(MEG) data to determine the behavior and localiza-
tion of brain sources [1]-[11]. When detecting a MEG
signal, spontaneous and environmental noises may se-
riously effect recorded data because the magnetic field
of brain signals is weak, particularly in the case of non-
averaged single-trial data.

Taking an average across many stimulation trials
is the most widely used technique for reducing instru-
mental and environmental noises and for identifying
the behavior and location of activities of interest such
as evoked field responses. In fact, when applying ICA
to MEG data, most researchers have treated averaged
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data [1],[5], [6], [8]-[11]. However, by taking an aver-
age, many pieces of important information such as the
trial-by-trial variation of the signals’ amplitude or its
dynamics will be lost.

Recently, some researchers have begun to study
non-averaged, single-trial data to retain the informa-
tion lost by averaging. Several ICA algorithms have
been investigated for the single-trial MEG data [2], [3],
[7]. The disadvantage here is that because the SNR
of single-trial data is very poor, the decomposition of
a low-power source signal from recorded data is still
influenced by noise.

In this paper, we deal with both non-averaged
single-trial data and averaged multiple-trials data and
we demonstrate several properties for analyzing the
data sets. We take note of several advantages with re-
gards to amplitude, dipole location and dynamics par-
ticular to each of the data sets.

When applying ICA to physiological data, most re-
searchers have used real, measured physiological data,
with some individual responses evoked by stimuli, and
their decomposed components are evaluated from a
neuroscience perspective. In this study, we use a syn-
thesized MEG data set, which includes an artificial
evoked field and real, measured brain data. The behav-
ior of our data set is similar to auditory evoked fields
(AEFs). The main advantage of our data set is that
dipole location of evoked responses and its dynamics
are known in advance, which facilitates the evaluation
of the decomposed components.

To decompose the source signal, in the pre-
processing of raw data, we applied an additive noise
reduction technique [2],[3]. At this stage, the non-
averaged or averaged MEG data are first decomposed
into de-correlated signals with the reduction of addi-
tive noise. In the stage of ICA, the de-correlated source
signals are further decomposed into independent com-
ponents by applying the joint approximate diagonal-
ization of eigenmatrices (JADE) algorithm [12]. In
the post-processing stage, we project these decomposed
components onto the sensor space. At this stage, we
propose a new criterion to measure the power of an
individual component.

Our paper is organized as follows. A model for
applying the ICA approach to MEG data analysis is
described in Sect.2. A description of the method for
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source decomposition is presented in Sect.3. The ex-
perimental results are presented in Sect. 4. The conclu-
sions are drawn in Sect. 5.

2. Data Analysis Model

In this section, we describe the model for applying ICA
to MEG data. Briefly, we assume there are two kinds of
noises which must be reduced in the analysis: The first
kind of noise is an additive or sensor noise, usually gen-
erated from the instruments (the individual sensors),
which contaminates the observed signals. Their power
will be reduced by using the robust pre-whitening tech-
nique in the pre-processing stage (c.f. Sect.3.1). The
second kind of noise is source noise. It will be discarded
after the source decomposition by means of the ICA
approach (c.f. Sect.3.2). After removing these noises
from the data, we will obtain the estimated compo-
nents, such as the evoked responses.

Sensor and source noises come from the following
process. We assume that neurons in different physical
regions of the brain are simultaneously active during
experimentation. Currents in a group of neurons situ-
ated close together can be equivalently represented by
a single current dipole called a neural source. Multiple
neural sources, including evoked responses, are super-
imposed on each other and are detected by sensors ar-
ranged on the scalp. During measurement, some unde-
sirable components such as environmental interferences
and instrumental noises are recorded at the same time
as the neural sources.

Based on the principle of MEG measurement, this
problem can be formulated as

x(t) = As(t) + e(t), (1)
where x(t) = [z1(t), -, 7m(t)]T represents the
transpose of m observations at time ¢.  s(t) =

[s1(t), -, sn(t)]T represents n unknown source compo-
nents which contains the neural sources and the envi-
ronmental interference sources. Neural sources include
the evoked response derived by the auditory or visual
stimulus and include spontaneous noises such as a-wave
components. Environmental interference sources in-
clude 50 Hz electrical power interference and artifacts
such as eye blinks. Since the environmental interfer-
ences contribute to at least two sensors, we regard them
as common components and define them as “source
noise.” Another kind of component such as the additive
noise represented by e(t) = [e1(t), -, en(t)]T is called
a unique component, and since it only contributes to
one sensor we define it as “sensor noise.” Since hu-
man tissue and skull do not attenuate magnetic fields
in MEG, AeR™*™ = (a;;) can be represented by a nu-
merical matrix whose element a;; is simply a quantity
related to the physical distance between the i-th sensor
and the j-th source.
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In the model, the sources s and their number n, ad-
ditive noise e and matrix A are unknown but the sensor
signals x are accessible. It is assumed that the compo-
nents of s are mutually statistically independent, as well
as being statistically independent of the noise compo-
nents e. Moreover, the noise components e themselves
are assumed to be mutually independent.

3. Data Analysis Method
3.1 Robust Pre-Whitening Technique

In this subsection, we describe our robust pre-whitening
technique [2], [3]. This technique is very capable of re-
ducing the power of sensor noises.

Let us rewrite Eq. (1) in a data matrix form as

X(mxN) = Amxn)SnxN) T Emxnys (2)

where N denotes data samples. When the sample size
N is sufficiently large, the covariance matrix of the ob-
served data in the mixing model ¥ can be written as

S =AAT + ¥, (3)

where W is a diagonal matrix of an additive noise
E. Also the covariance matrix of the observed data
recorded by sensors can be given by

C =Xxx7, (4)

When the SNR is high, and the noise variance ¥
is small or close to zero, a cost function for fitting the
model to the data can be employed to render C— AAT
as small as possible. Here, the mixing matrix A and its
estimation A can be estimated as

AAT =U,A,UT, (5)

where Aj; is a diagonal matrix whose elements are
eigenvalues of C, the columns of Uy are the corre-
sponding eigenvectors and 7 is the estimated number
of sources. In Eq. (5), let one possible solution for A is

A=UA. (6)

Note that ATA = A;, and the _principal-component
scores can be obtained from x = Az, that is,

a(t) = A, *UTx(?). (7)

Using this result, the covariance matrix is obtained as
E{zz"} = I, which means that zz” are identity and
that the components are de-correlated in the new set
of data.

This is the well-known, standard principal compo-
nent analysis (PCA), but this technique does not take
into account the diagonal elements of ¥. For a prac-
tical model such as ours, additive noises cannot be ne-
glected. Therefore we needed to decompose the data
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into de-correlated signals, reducing additive noise and
optimizing dimensionality. In this study, we applied a
robust pre-whitening technique to accomplish this task.

With the robust pre-whitening technique, instead
of fitting AAT to C as is done for the standard PCA
approach, we fit AAT to C — ¥ using the eigenvalue
decomposition method. In this case, the cost function
is obtained as

L(A,®) = tr[AAT — (C - ®))% (8)

AW

And we minimize it by % = 0, whereby the esti-

mate noise variance W is obtained as
U = diag(C — AAT), (9)

where the estimate A is obtained in the same manner
as shown in Eq. (6). Using these estimates A and W,
we can obtain the transform matrix for the robust pre-
whitening technique as

=l a1

Q=[AT® A 'AT® . (10)

Using the above result, the new set of data transformed
from the observations can be obtained by

2(t) = Qx(t). (11)

Note that the covariance matrix is E{zz’} = I, +
Q¥QT, which implies that the source signals in a sub-
space are de-correlated.

A similar noise reduction approach that applies
factor analysis (FA) to decomposition of MEG data has
been reported in [5]. Both this method and ours take
additive noises into account, but with our robust pre-
whitening technique, the distribution of additive noises
is not restricted. Therefore, our technique is more ro-
bust and effective for data with non-Gaussian noise
such as the outlier.

3.2 JADE Algorithm

It should be noted that the robust pre-whitening tech-
nique is needed to reduce the power of sensor noises
and the number of parameters, but it is insufficient to
obtain the independent components since an orthog-
onal matrix in general contains additional degrees of
freedom. Therefore, the remaining parameters must be
further estimated by using an ICA algorithm. In other
words, the power of the sensor noise has been reduced
by using the robust pre-whitening technique, but some
source noises still overlapped, and those will need to
be discarded by means of the ICA procedure. After
removing these noises from the data, we will obtain
the estimated source components, such as the evoked
responses.

The JADE algorithm has two procedures termed
orthogonalization in PCA and rotation. We did ap-
ply the rotation procedure in the JADE algorithm, de-
scribed below, but instead of the orthogonalization in

PCA, we applied the robust pre-whitening technique
described in Sect. 3.1.

The main advantage of the JADE algorithm is its
efficiency. However, it is memory intensive for large
dimension matrix calculations. We solved this prob-
lem by optimizing dimensionality in the robust pre-
whitening technique.

The rotation procedure in JADE uses matrices
F(M) formulated by a fourth-order cumulant tensor
of the outputs with an arbitrary matrix M as

K L

Z Z Cum(zi, 2, 2k, 21) Mk, (12)
k=11=1

F(M) =

where the Cum(-) denotes a standard cumulant and
myy is the (I, k)-th element of matrix M. The correct
rotation matrix W can be obtained by diagonalizing
the matrix F(M), i.e. WF(M)WT approximates a di-
agonal matrix.

After performing the robust pre-whitening tech-
nique and rotation in JADE, the de-mixture matrix can
be obtained by WQ. With these we can calculate the
decomposed sources yeR" as

y(t) = Wa(t) = WQx(t). (13)

3.3 Projection of the Decomposed Components

The robust pre-whitening and ICA techniques serve to
filter the raw data, decreasing the power of the sensor
noises and decomposing the sources. The estimated
behavior of the individual sources can be represented
as Eq.(13). To better visualize the information, we
projected the decomposed components onto the sensor
space.

The virtual sensor signals coming from multiple
components are obtained as

X(t) = AW ly(t). (14)

To determine the information of the k-th individual
components, we forced every element to be zero except
the k-th (k=1,---,7n) of y(¢) in Eq. (14). The virtual
sensor signals coming from k-th individual components
are obtained as

Ri(t) = AW L0 yi(t) -+~ 0] (15)

The relationship between virtual sensor signals from
multiple and k-th individual components Xy, is

%(1) = 3 %(0). (16)
k=1

Note that the sensor noises and some source noises have
been reduced in the estimated observation X (¢).
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3.4 Power of the Decomposed Components

It is well known that the amplitudes of signals decom-
posed by ICA are irregular. In order to measure the
power of decomposed signals, we apply the procedure
of data projection as described in Sect. 3.3. The virtual
sensor signals from the k-th individual components are
obtained as Eq. (15). In this paper, we define the total
sum of each virtual sensor signal from the k-th individ-
ual component as:

M
vi(t) = % Z Xp,i(t) (17)

to compare the power of decomposed components. In
Eq. (17), M denotes the number of sensors and Xy, ; de-
notes the k-th decomposed components of y(¢) into the
i-th sensor. Here vj represents the total observation
signals derived by the k-th decomposed signal, so that
its amplitude is not ambiguous.

Using the above results, we define the power of the
k-th decomposed components v, as

N
Poe =Y vt (1), (18)

where, N denotes the number of data samples. Apply-
ing Py as the power of the k-th decomposed compo-
nents, we can compare the power of individual compo-
nents decomposed by ICA.

4. Experimental Results
4.1 Synthesized MEG Data

In this subsection, we describe the synthesized MEG
data set, used for simulation, which is similar to the
Auditory Evoked Fields (AEFs). We synthesized an
artificial signal (Fig. 1(left)) and a real measured MEG
signal (Fig.1(middle)) which is recorded by using an
Omega-64 (CTF Systems Inc., Canada). The sensor
arrays consist of 64 channels and the sensor distribu-
tion is shown in Fig. 2. The sampling rate was 250 Hz
with a duration of 50sec. for 12500 samples. The ob-
served data X(g4x12500) Was segmented into 100 trials,
so the duration of each trial X;(g4x125) (7 = 1,---,100)
is 0.5sec. and each trial has 125 samples, where i de-
notes the trial number.

The source signals in this data set include two dif-
ferent evoked fields responses, EF1 and EF2, as shown
in Fig.1(left) and include the 50 Hz electrical power
interference and the a-wave component involved in
the real measured MEG data shown in Fig. 1(middle).
The signal EF1 was artificially evoked from 0.2 sec. to
0.3sec. with a peak at 0.25sec. and its strength was
20nAm (see Fig. 1(a)). The signal EF2 was artificially

-05 -05 -05
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(b)
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02 0.4 02 0.4 0.2 0.4
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Fig.1 An example for data synthesizing: (a) Data synthesiz-
ing at sensor-L24, which detects signal EF1. (b) Data synthesiz-
ing at sensor-L44, which detects signal EF2. In each example,
artificial EF signals (left), real measured MEG signals (middle),
synthesized signals (right) are represented. The horizontal axis
expresses time (sec.) and the vertical axis expresses amplitude
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Fig.2 Sensor distribution.

Table 1  Artificial evoked fields.
peak time | dipole location(z,y,z) | dipole moment
EF1 | 0.25 (sec.) 10, 50, 50 (mm) 20 (nAm)
EF2 | 0.27 (sec.) —40, 40, 40 (mm) 30 (nAm)

evoked from 0.22 sec. to 0.32 sec. with a peak at 0.27 sec.
and its strength was 30nAm (see Fig.1(b)). The EF1
was located at [z, y, z] = [10, 50, 50] mm and the EF2
was located at [z, y, 2] = [—40, 40, 40| mm (see Ta-
ble 1), where a head model presupposes a sphere with
a radius of 75mm and z,y, z axis are set according to
Fig. 3.

4.2 Source Decomposition

In this subsection, we demonstrate the decomposition
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Fig.3 3D frames of reference.
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Fig.4 (a) 1st. single-trial data, top view. The horizontal axis
expresses time from 0 to 0.5sec. and the vertical axis expresses
amplitude from —0.5 to 0.5 pT. (b) Result of ICA with the robust
pre-whitening technique. (c) Frequency contents of (b).

of the source by means of the robust pre-whitening tech-
nique with the JADE algorithm for the single-trial data,
the averaged 10-trials data and the averaged 100-trials
data, as shown in Figs. 4-6(a). In each result, the num-
ber of sources is assumed to be n = 4. The results v(t)
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Fig.5 (a) Averaged of 10 trials from 1 to 10 trial data, top
view. (b) Result of ICA with the robust pre-whitening technique.
(¢) Frequency contents of (b).

(t=0,---,0.5sec., k =1,---,4) are shown in Figs. 4-
6(b). Using a 125-point short time Fourier transform
for vi(t), we calculated the power spectrum of each de-
composed component Vi(f) (f = 0,---,125Hz). See
Figs. 4-6(c).

In our study, we focused on the decomposed sig-
nals EF1 and EF2, the 50 Hz electrical power interfer-
ence and the a-wave component. We will now demon-
strate the procedure for automatic classification of the
decomposed components into signals EF1 and EF2, the
50 Hz electrical power interference and the a-wave com-
ponent.

First, we calculated the power of each decomposed
component in the time domain Py = Z?fo vi(t)vE(t)
and frequency domain Py, = 2}2:50 Vi(HVE,
where vi(t) denotes the k-th decomposed component
and Vi (f) denotes the power spectrum of v (¢). To
define the criterion for classifying the decomposed com-
ponents into EF1 and EF2, we calculated the power of
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Fig.6 (a) Averaged of 100 trials from 1 to 100 trial data, top
view. (b) Result of ICA with the robust pre-whitening technique.
(c) Frequency contents of (b).

each decomposed com];onent in the duration from 0.2
to 0.3sec. P, = Z?':02 vi(t)vi(t) and from 0.22 to
0.32sec. Pl = 0% vi(t)vE(t). To define the cri-
terion for classifying the decomposed components into
the 50 Hz electrical power interference and a-wave com-

ponent, we calculated the power in the frequency do-
main from 48 to 52 Hz Py, = Y72 45 Vi(f) VI (f) and

from 8 to 12 Hz P, = 2;2:8 Vi(f)VE(f). Here we
define the ratios R, = %, e = Pk,
and Ry, = ﬁi’/:. When R.,, > kgpi1, the decomposed
component v 1s the signal EF1, since the signal EF1
was artificially evoked from 0.2 to 0.3 sec. where kgp
is a positive constant. Similarly, when R, > kgpa,

Vi > ke or RY,, > kg, the decomposed component
vy is the signal EF2, the 50 Hz electrical power inter-
ference or a-wave component, respectively, where kg o,
k. and k., are positive constants. Based on prior expe-

rience, for this experiment we set these parameters as

— P‘/,,k / — P\,/k
RVk ~ Pyg
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kEFl = 0.6, kEFQ = 0.6, k‘e = 0.4 and ka = 0.357
respectively. The parameters k were determined that
only one component (EF1, EF2, electrical interference
or a-wave) could be decided from one decomposed com-
ponent and the number of definite components from all
decomposed components will become the maximum.

We demonstrate the results for the single-trial data
shown in Fig.4. The result is that vy has satisfied the
equation RY{;, > kg, so this component can be con-
firmed as a-wave component. As v, vs and v4 have
not satisfied the other criteria, we know that these com-
ponents cannot be decomposed.

In the results for the averaged 10-trials data shown
in Fig. 5, v1, vo, vs and vy4 have satisfied the equations

w1 = kgr2, Ryy > kgr1, Rys > ko and Ry, > k.,
respectively, and can thus be regarded as signals EF2,
EF1, a-wave component and electrical power interfer-
ence, respectively.

In the results for the averaged 100-trials data
shown in Fig. 6, vi, vy and v3 have satisfied the equa-
tion Ry > kgpi, Ryy > ke and Rys > kgpo, re-
spectively, and can thus be regarded as EF1, electrical
power interference and EF2, respectively. v4 has not
satisfied the other criterion, revealing that this compo-
nent cannot be decomposed. It is actually environment
interference, whose power is reduced by taking an av-
erage.

4.3 Dipole Localization

In this subsection, we discuss dipole location of the de-
composed component treated in Sect.4.2. We used the
standard spatio-temporal dipole fitting routine, MEG
v3.3a (CTF System Inc., Canada), to find dipole lo-
cation. The estimated maps are shown in Fig.7 and
dipole locations of individual components are shown in
Table 2. In Fig. 7, the top ‘Measured’ map was derived
from a decomposed component. The middle ‘Theoret-
ical’ map was computed by the moving dipoles. The
bottom ‘Difference’ map represents the difference be-
tween the ‘Measured’ and ‘Theoretical’ maps. The am-
plitude information appears in the color scale bar.

In this study, since dipole locations of EF1 and
EF2 were known in advance, we can compare them to
the estimated one. Here we define the distance between
the true dipole location [z, y, z] mm and the estimated
dipole location [z, ¥, Zz] mm as

r=VE D2+ -9+ (= 2P (19)

where the true dipole location of EF1 was [10, 50, 50]
and dipole location of EF2 was [—40, 40, 40].
Applying this routine, we demonstrate dipole lo-
calization derived by analyzing the single-trial data.
The estimated map of a-wave component is shown in
Fig. 7(a). In this result, the estimated map of a-wave
component appears on the back area of the brain. The
estimated dipole location is [—46.5, — 6.2, 57.8] mm
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Fig.7 Estimated maps: (a) Estimated map for single-trial data focus on a-wave. (b)
Estimated map for averaged 10-trials data focus on a-wave. (c) Estimated map for av-
eraged 10-trials data focus on EF1. (d) Estimated map for averaged 10-trials data focus
on EF2. (e) Estimated map for averaged 100-trials data focus on EF1. (f) Estimated
map for averaged 100-trials data focus on EF2. In each map, the measured map (top),
the theoretical map (middle) and the difference between measured and theoretical map
(bottom) are represented.

Table 2 Estimated dipole location (mm).

(a) Single-trial data.
T y z r
decomposed a-wave | —46.5 —6.2 57.8 | -

(b) Averaged 10-trials data.

T y z r
decomposed a-wave | —50.8 —4.4 55.0 -
averaged EF'1 7.8 16.5 46.4 | 33.8
decomposed EF1 —5.7 46.4  47.5 | 16.3
averaged EF2 —38.2 12,5 523 | 30.2
decomposed EF2 —37.5 241 529 | 20.6
(c) Averaged 100-trials data.
T Y z r
averaged EF1 5.6 57.3 48.1 | 87
decomposed EF1 8.9 47.0 509 | 34
averaged EF2 —43.0 375 444 | 59
decomposed EF2 | —37.1 370 36.3 | 5.6

and the maximum amplitude is 363 {T (see Table 2(a)).

The estimated maps of a-wave component, sig-
nals EF1 and EF2, derived by analyzing the average
of 10 trials, are shown in Figs.7(b), (c), (d), respec-
tively. The result of a-wave component is that the esti-
mated map and dipole location [-50.8, —4.4, 55.0] mm
are close to those in the previous result, but the am-
plitude is 97T, which is smaller than the result de-
rived by the single-trial data. Comparing the two
results of the single-trial and the averaged 10-trials
data, we can conclude that the power of decomposed
a-wave component is reduced by taking an average
across the data trials. As for the result of EF1, note
that the evoked response appears on the left-front area
of the brain. The estimated dipole location becomes

[—5.7, 46.4, 47.5) mm. Using Eq. (19), the distance be-
tween the true and estimated dipole location of EF1
is 16.3mm. For the result of EF2, the evoked re-
sponse appears on the left-back area of the brain. The
estimated dipole location is [—37.5, 24.1, 52.9] mm.
Therefore the distance between the true and estimated
dipole locations of EF2 is 20.6 mm. Here, we describe
the results of dipole estimation for averaged 10 trials
data. The results of dipole estimation for averaged 10
trials data become [7.8, 16.5, 46.4]mm for EF1 and
[—38.2, 12.5, 52.3]mm for EF2. Therefore the dis-
tances between the true and estimated dipole locations
are 33.8mm for EF1 and 30.2mm for EF2. Compar-
ing the results for applying ICA and taking averages,
we see that dipole location derived by applying ICA is
more accurate than that of taking averages. We con-
clude that dipole locations of evoked fields become more
accurate by applying ICA approach (see Table 2(b)).
The estimated maps of the EF1 and EF2 derived
by analyzing the averaged 100-trials data are shown in
Figs. 7(e), (f), respectively. In the results of EF1 and
EF2, note that the evoked responses appear like the
maps derived by analyzing the averaged 10-trials data.
The estimated dipole locations are [8.9, 47.0, 50.9] mm
at EF1 and [-37.1, 37.0, 36.3] mm at EF2. Therefore
the distances between the true and estimated dipole
locations are 3.4mm for EF1 and 5.6mm for EF2.
The results of dipole estimation for averaged 100 tri-
als data become [5.6, 57.3, 48.1]mm for EF1 and
[—43.0, 37.5, 44.4)mm for EF2. Therefore the dis-
tances between the true and estimated dipole locations
are 8.7mm for EF1 and 5.9 mm for EF2. Comparing
the results for applying ICA and taking averages, we see
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Fig.8 Decomposition rates and the number of averages across
data trials.

that dipole location derived by applying ICA is more
accurate than that of taking averages. We conclude
that the ICA approach is very efficient for dipole esti-
mation (see Table 2(c)). Comparing the results of the
averaged 10 and 100-trials data, we see that dipole lo-
cation derived from the averaged 100-trials data is more
accurate than that of 10-trials data. We conclude that
dipole locations of evoked fields are more accurate when
an average is taken across sets of data trials.

4.4 Comparison of the Decomposed Components

In this subsection, we demonstrate the relationship be-
tween the decomposed component and the number of
averages across data trials. For the input signal we
take averages across different number of trials from 1
to 100-trials. In each number of averages, from 1 to
70-trials, we simulate by using 30 types of moving data
sets and count the number of decomposed signal EF1
(ngr1), signal EF2 (ngpa), electrical power interfer-
ence (n.) and a-wave component (n,). To investigate
the performance of source decomposition, we calculate
the ratios =£&L, #EL2 e and 3. In case the number
of averages is 80, 90 or 100-trials, we simulate by using
20, 10, 1 types of moving data sets, respectively, and
calculate the ratios.

The relationship between these ratios and the num-
ber of averages across the data trials is shown in Fig. 8.
The horizontal axis expresses the number of averages
from 1 to 100 trials and the vertical axis expresses these
ratios. There are several things to note in Fig.8. The
ratios at EF1, EF2 and electrical power interference
are very low when the number of averages is small, but
when the number of averages is large, the ratios are
high. Also, the ratio at EF2 is higher than at EF1
since the power of EF2 (30nAm) is larger than that
of EF1 (20nAm). Finally, the ratio of a-wave compo-
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Fig.9 Powers of decomposed components and the number of
averages across data trials.

nent is high when the number of averages is small, but
the larger the number of averages, the lower the ratio
becomes.

Next, we demonstrate the relationship between the
power of each decomposed component and the number
of averages. The powers of the decomposed compo-
nents P are calculated by using Eq. (18). The results
are shown in Fig.9. The powers of decomposed com-
ponents are high when the number of averages is small.
This means that these decomposed components are in-
fluenced by high power components such as a-wave
component. In contrast, the power of a-wave com-
ponent is almost zero, when the number of average is
large. This means that the power of a-wave component
is reduced by taking an average.

Given these results we can confirm that the anal-
ysis of averaged multiple-trials data is efficient for ob-
taining the evoked response. However, the analysis of
non-averaged single-trial data is more efficient for ob-
taining the strength and dynamic components such as
a-wave component.

5. Conclusions

In this paper, we performed source decomposition of
single-trial and averaged multiple-trials MEG data us-
ing a robust pre-whitening technique and the JADE
algorithm. Our results showed that the analysis of av-
eraged data effectively determines dipole location of the
evoked fields. For strength and dynamic components
such as a-wave, the single-trial data analysis is more
efficient. When one requires both the range of evoked
strength and dipole locations, the analysis of the aver-
aged limited-trials data is the most efficient option.
The authors hope these results will help neurosci-
entists to further their understanding of the temporal
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cortex.
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