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Abstract Independent component analysis (ICA) has been applied to magnetoencephalographic (MEG)
data to determine the behavior and localization of brain sources. In this work, both nonaveraged single-
trial data and averaged multiple-trial data are analyzed, in order to study the relationship between the
performance of decomposition and the number of averages across data trials. To evaluate the performance
of source decomposition, 1) the ratio of source decomposition, which indicates whether source components
will be decomposed or not, 2) the power of decomposed components, which is calculated as the covariance
of decomposed components, and 3) the accuracy of source estimation, are demonstrated. In addition, a
number of existing ICA algorithms such as JADE, Fast-ICA, and the natural gradient-based algorithm with
a robust pre-whitening technique are used to decompose MEG data. Our results show the relationship
between the accuracy of source decomposition and the number of averages and, by applying the ICA
approach, the number of averages can be reduced.

Keywords: magnetoencephalography (MEG), independent component analysis (ICA), JADE, fast-ICA, natural
gradient-based algorithm, robust pre-whitening technique, source localization

1. Introduction vironmental noises may seriously affect the recorded

data because the magnetic fields of brain signals are

Electroencephalography (EEG) and MEG are
powerful and noninvasive techniques for measuring
human brain activity with a high temporal resolu-
tion. The motivation for studying EEG/MEG data
analysis is to extract the essential features of mea-
sured data and represent them as corresponding hu-
man brain functions. ICA or blind source separation
(BSS) [1]-[7] has been applied to MEG data to deter-
mine the behavior and localization of brain sources,
by many researchers focused on neural networks and
statistical signal processing [8]-[20]. When detecting
a MEG signal by applying ICA, spontaneous and en-
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weak, particularly in the case of nonaveraged data.
The most widely used technique for reducing in-
strumental and environmental noises is to take an av-
erage across many stimulation trials. In fact, when
applying ICA to MEG data, most researchers have
treated averaged data. Makeig et al. {8] first applied
the Informax algorithm [7] to study averaged EEG
data with the event-related potentials (ERP) task.
Vigdrio and coworkers [9], [15] applied FastICA [6]
to study averaged EEG and MEG data with audi-
tory evoked fields (AEF) and somatosensory evoked
fields (SEF), and further localized the sources by us-
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ing magnetic field patterns. Ikeda and Toyama [13]
and Ikeda [14] developed a factor analysis algorithm
with applying JADE [4] to study averaged MEG data
with phantom and visual tasks, and further visualized
the decomposed components by using the spatial fil-
tering technique. Other researchers applied various
kinds of ICA algorithms [1]-[7] to extract neural ac-
tivities or/and artifacts from EEG or MEG data [10],
[11], [16], [18], [20].

However, by taking an average, important infor-
mation is lost, making it advantageous to decrease the
number of averages taken across data trials. The dis-
advantage of having fewer averages is that because the
SNR is very poor, the decomposition of a low-power
source signal from recorded data is still influenced by
noise. Recently, some researchers have studied non-
averaged, single-trial data with the aim of retaining
the information lost by averaging [15], [17], [19], [20].
Jung et al. have studied single-trial EEG records from
normal and autistic subjects performing visual selec-
tive attention tasks [12].

In this work, both nonaveraged single-trial data
and averaged multiple-trial data are analyzed, in or-
der to study the relationship between the accuracy of
decomposed brain sources and the number of averages
taken. To evaluate the decomposition performance, 1)
the ratio of source decomposition, 2) the power of de-
composed components, and 3) the accuracy of source
estimation, are demonstrated.

When applying ICA to physiological data, most
researchers have used real, measured, physiological
data and evaluated the decomposed components from
a neuroscience perspective [8]-[17], [19]. In this study,
a synthesized MEG data set is used, which includes an
artificial evoked field and real, measured brain data.
The behavior of our data set is similar to AEF. The
main advantage of our data set is that the dipole loca-
tions and the dynamics of evoked responses are known
in advance, which facilitates the evaluation of the de-
composed components.

2. Data Analysis Model

In this section, the model for applying ICA to
MEG data is described. Since neurons in different
physical regions of the brain are simultaneously ac-
tive during experimentation, currents in a group of
neurons situated close together can be equivalently
represented by a single current dipole called a neu-
ral source. Multiple neural sources, including evoked
responses, are superimposed on each other and are
detected by sensors arranged on the scalp. During
measurement, some undesirable components such as
environmental interferences and instrumental noises
are recorded at the same time as the neural sources.

The particular ICA model considered in this paper
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is
x(t) = As(t) + e(t) (1)
where x(t) = [z1(t), -, T (t)]T represents the trans-
position of m observations at time t. s(t) =
[s1(t),- -, 5n(t)]T represents n unknown source com-
ponents which contain the neural sources and the en-
vironmental interference sources. Neural sources in-
clude the evoked response derived by the auditory or
visual stimulus and include spontaneous noises such
as spontaneous a-wave components. Environmental
interference sources include electrical power interfer-
ence and artifacts such as eye blinks. Since the en-
vironmental interferences contribute to at least two
sensors, they are regarded as common components
and are defined as “source noise”. Another kind of
component, the additive noise represented by e(t) =
le1(t),---,em(t)]” is called a unique component. Since
it only contributes to one sensor, it is defined as “sen-
sor noise”. Since human tissue and skull do not at-
tenuate magnetic fields in MEG, AeR™*™ = (a;;)
can be represented by a numerical matrix whose ele-
ment a;; is simply a quantity related to the physical
distance between the i-th sensor and the j-th source.
In the model, the sources s and their number n,
additive noise e and matrix A are unknown but the
sensor signals x are accessible. It is assumed that the
components of s are mutually statistically indepen-
dent, as well as being statistically independent of the
noise components e. Moreover, the noise components
e themselves are assumed to be mutually independent.
Summarizing this model, there are two kinds of
noises that must be reduced in the data analysis. The
first kind of noise is sensor noise (additive noise). It
is usually generated from instruments such as individ-
ual sensors, and contaminates the observed signals.
Their power will be reduced by using the robust pre-
whitening technique in the pre-processing stage. The
second kind of noise is source noise. It will be dis-
carded after the source decomposition by means of
the ICA approach. After removing these noises from
the data, estimated components such as the evoked
responses will be obtained.

3. Pre-Whitening Technique
3.1 Robust pre-whitening technique

In this subsection, the robust pre-whitening tech-
nique [19] is described. This technique is very capable
of reducing the power of sensor noise (additive noise).
The aim of this task is to find the estimate lower di-
mension orthogonal matrix and covariance matrix of
the noise in the orthogonalization procedure.

Let us rewrite Eq. (1) in a data matrix form as

X(mxN) = Amxn)SmxnN) + Emxn) (2)
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where N denotes the number of data samples. When
the sample size is sufficiently large, the covariance ma-
trix of the observed data in the mixing model ¥ can
be written as ¥ = AAT + ¥, where ¥ is a diagonal
matrix of the additive noise E. Also the covariance
matrix of the observed data recorded by sensors can
be given by C = XXT.
For the robust pre-whitening technique, A can be

estimated as R .

A=U,A; (3)

by applying the standard principal component anal-
ysis (PCA) approach, where A; is a diagonal matrix
whose elements are eigenvalues of C, the columns of
U, are the corresponding eigenvectors, and 7 is the
estimated number of sources.

To estimate ¥, we fit ¥ to C using the eigenvalue
decomposition method. In this case, the cost function
is obtained as L(A, ¥) = tr[¥ — C]2. It is minimized
by OL(A,¥)/0¥® = 0, whereby the estimate noise
variance ¥ is obtained as

¥ = diag(C — AAT) (4)

where the estimate A is obtained in the same manner
as shown in Eq. (3). Using these estimates, A and ¥,
the transform matrix can be obtained as

Q=[AT¥ A]'ATE (5)

Using this, the new set of data, the orthogonal obser-
vation, can be obtained by

z(t) = Qx(t) (6)

Note that the covariance matrix is E[zzT] = I +
Q¥QT, which implies that the source signals in a
subspace are de-correlated.

A similar noise reduction approach that involves
the application of factor analysis (FA) to the decom-
position of MEG data has been reported in [13]. Both
this method and ours take additive noises into ac-
count, but with our robust pre-whitening technique,
the distribution of additive noises is not restricted.
Therefore, our technique is more robust and effective
for data with non-Gaussian noise such as the outlier.

3.2 Criterion for choosing the number of sources

In this subsection, the criterion for choosing the
number of sources is explained. The total variance ac-
counted for by all the orthogonal components is given
by trAy, that is, the sum of the variances of all the
linear combinations:

trAr = A + A+ A (7

where Ar denotes the k-th largest eigenvalue of C.
That will be the same as the total variance of all the
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variables if £ = m, because C = UAUT and trC =
tr(UAUT) = trA. The variance left unexplained by
the components, that is, the total residual variance,
is therefore Ag41 + Apye + -+ + An. Consequently,
the total variance of all the variables is the sum of
the variance explained by the k& components and the
residual variance.

The criterion for choosing the number of sources
is defined in such a manner as to account for a satis-
factory amount of total variation. The way to start is
to compute the cumulative percentage variance contri-
bution obtained for successive values of 7 = 1,2, -,
and to stop when this is sufficiently large, for exam-
ple, larger than 75 %, 90 %, or 95 %. The cumulative
percentage variance contribution for a given value of
7l is computed as

_ ZE:I /\k
or = =L X100 (8)

4. Independent Component Analysis

It should be noted that the robust pre-whitening
technique is needed to reduce the power of sensor
noises and the number of parameters, but it is insuffi-
cient to obtain the independent components since an
orthogonal matrix in general contains additional de-
grees of freedom. Therefore, the remaining parameters
must be further estimated by using an ICA algorithm.
In other words, the power of the sensor noise has been
reduced by using the robust pre-whitening technique,
but some source noises are still overlapped, and those
will need to be eliminated by means of the ICA proce-
dure. After removing these noises from the data, we
will obtain the estimated source components, such as
the evoked responses.

After pre-processing and ICA, the decomposed in-
dependent sources yeR"™ can be obtained from a lin-
ear transformation as

y(t) = Wz(t) = WQx(t) (9)

where WeR™ " is termed the demixing matrix which
can be computed by using an ICA algorithm such as
JADE [4], Fast-ICA [6], the natural gradient-based
algorithm [3], or Info-MAX [2].

4.1 JADE algorithm

The joint approximate diagonalization of eigenma-
trices (JADE) has been proposed in [4]. The JADE
algorithm has two procedures termed orthogonaliza-
tion in PCA and rotation. We apply the rotation
procedure in the JADE algorithm, described below,
but instead of the orthogonalization in PCA, we ap-
ply the robust pre-whitening technique described in
Section 3.1.

463



The main advantage of the JADE algorithm is its
efficiency. However, it is memory intensive for large
dimension matrix calculations. We solve this problem
by optimizing the dimensionality in the robust pre-
whitening technique.

The rotation procedure in JADE uses matrices
F(M) formulated by a fourth-order cumulant tensor
of the outputs with an arbitrary matrix M as

K L
F(M) = ZZCum(zi,zj,zk,zl)mlk (10)
k=11=1
where Cum(-) denotes a standard cumulant and my;
is the (I, k)-th element of matrix M. The correct rota-
tion matrix W can be obtained by diagonalizing the
matrix F(M), namely, WF(M)W7 approximates a
diagonal matrix.

4.2 Fast-ICA algorithm

The Fast-ICA algorithm has been proposed in [6].
This algorithm is based on a fixed-point method and
is represented by

Elzg(w(t)" )] - Bw(t)

+ = _
=T L
w(t+1) = ”:i“ (12)

where g(y) = °, or g(y) = tanh(y).

Comparing the algorithms based on the gradi-
ent descent methods, the fixed-point algorithm has a
higher speed convergence property since the Newton
method in block mode is applied. It is easy to apply in
data analysis since there is no learning rate parameter
that must be adjusted. Furthermore, we can extract
independent sources one by one. This means the con-
dition of the prior knowledge of the source number will
be more relaxed. In this study, the process is iterated
until the weight vector w converges to a stable value,
w(t)Tw(t — 1) < 0.0001.

When the power of noise is strong in the data, par-
ticularly in the case of nonaveraged single-trial data,
the procedure of decorrelation will fail. Therefore, it
should be noted that the fixed-point algorithm re-
quires a preliminary sphering of the data. In this
study, instead of sphering in PCA, we apply the robust
pre-whitening technique described in Section 3.1.

4.3 Natural gradient-based algorithm

The Kullback-Leibler divergence is the basic ICA
tool [3] which measures the mutual stochastic inde-
pendence of the output signals y;(¢) between the joint
probability density function p,(y) and the marginal
probability density function p;(y;) as

ShY)_gy g

D(y|W) = /py(Y)logHi:Ipi(yi)
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In Eq. (13), the Kullback-Leibler divergence
D(y|W) = 0, if and only if the independence con-
dition py(y) = [T, pi(y:) is satisfied.

By applying the natural gradient to minimize the
Kullback-Leibler divergence, Eq. (13), the general
learning rule for updating W can be developed as

AW(t) =n[I- Oy O] WE)  (14)

In Eq. (14), n > 0 is a learning rate, and ¢(-) is the
vector of activation functions, whose optimal compo-
nents are described as

pi(y:)

d
dy; log pi(v:) pi(y:) (15)
where p;(y;) = dpi(y:)/dy;.

It is noted that some other independently devel-
oped algorithms, for example, the extended Info-MAX
algorithm [2], can be classified in the same category as
the above algorithm, since they have a similar form.

The key point for applying this type of algorithm is
to employ a suitable nonlinear function that enables us
to separate the mixtures of sub- and super-Gaussian
sources. It is desirable that the nonlinear function be
robust to the underinfluence of the outlier. In this
work, we apply the algorithm with a robust nonlin-
ear function based on the e-distribution (exponential
family of distributions) and t-distribution models [19)
as

wi(ys) =

ei(yi) = adasgn(yi)|Aayil*!, Ko = £;<0 (16)
1+ B)y; .

@i(ys) = 5, kg =Fk; >0 (17)
y? + A%

In Egs. (16) and (17), a and 8 are the parameters
which can be obtained by estimating the kurtosis &;
of output signal y;, and A, and Ag are the scaling
constants for normalizing the variance.

Here the procedure of this algorithm is described.
First, the kurtosis is calculated as &; = 7hg/m3 — 3,
where the 2nd- and 4th-order moments are estimated
by using () = [1 = n(t)]rh; (¢ — 1) + n(t)y!(t), (G =
2,4). Here, 0 < 1 < 1is a learning rate. Two look-up

tables for
r(3)rt)
a = T%)‘ —3 and Kg =

are established in advance, and « or § is sought from
the table according to the value of #;. Next, the scal-
ing constant is calculated as

NEORENN NGOk
““[mar(i)] Omﬁ‘{gmgr(g)] (19)

using the estimate /M, and a or 8. Finally, the non-
linear function is calculated by using Eq. (16) or (17)
and W is updated by using Eq. (14). In this study,
n = 0.01 is used to separate the overlapping sub- and
super-Gaussian components.
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Fig. 1 Example of data synthesis at 1st trial: artificial EF signals (left), real measured 1st trial MEG signals
(middle), and synthesized signals (right): The horizontal axis expresses time from 0 to 0.5 sec. and the
vertical axis expresses amplitude from —0.4 to 0.4 pT.

~—

4.4 Projection of the decomposed components dipole locations and the dynamics of evoked responses
are known in advance, which facilitates the evaluation

The robust pre-whitening and I[CA techniques of the decomposed components.
serve to filter the raw data, decreasing the power of When analyzing the synthesized data, the data
the sensor noises and decomposing the sources. The must be realistic or adequate for real brain source sep-
estimated behavior of the individual sources can be aration. Therefore, not an artificial noise signal but
represented as Eq. (9). To better visualize the in- a real measured brain signal is added together to the
formation, we projected the decomposed components artificial evoked signal. This data set is based on a
into the sensor space. neuroscience perspective and is synthesized similarly
The virtual sensor signals coming from multiple to AEF. This means that the power and range of the
components are obtained as evoked field response are based on experimental data.

The artificial evoked field signals are the virtual
sensor signals, under the assumption that the evoked
To determine the information of the k-th individual field source is evoked at the source of the magnetic
components, we forced every element to be zero ex- field. The evoked S{gnal is artificially evoked frqm
cept the k-th (k = 1,--,7) of y(t) in Eq. (20). The 0.2 sec. to 0.3 sec. with a peak at 0.25 sec. (see Fig.

virtual sensor signals coming from the k-th individual 1) The location' [z, Y z] (mm), direction vector [az-
components are obtained as imuth: az, declination: dec] (deg.), and dipole mo-

R ment @ (nAm) are set as [z, y, z] = [10.0, 10.0, 60.0]

Xp(t) = AWTL0- -y (t)---0]7 (21) mm, [az, dec] = [50.0, 103.0] deg. and Q = 40 nAm,

respectively, where a head model presupposes a sphere
with a radius of 75 mm.

The real measured signals are recorded by using

x(t) = AW 1y (1) (20)

The relationship between the virtual sensor signals
from the multiple and the k-th individual components

Xy is . an Omega-64 (CTF Systems Inc., Canada). During
< < detection of the real measured MEG signal, a male

t) = t 22 ’
x(®) kz_:lxk( ) (22) subject is instructed to keep his eyes closed in a re-

laxed condition. We consider that there is almost no
eye blink components, eye movement components, or
muscle artifacts in this data set. The sensor arrays
consist of 64 channels and the sampling rate is 250
Hz with a duration of 40 sec. The observed data is
segmented into 80 trials, so the duration of each trial
is 0.5 sec. and each trial has 125 samples.

The source signals in this data set include the
evoked field response as well as the electrical power
interference and the spontaneous a-wave component
involved in the real measured MEG data.

Note that the sensor noises and some source noises
have been reduced in the estimated observation X (t).

5. Simulation Method

5.1 MEG data set

In this subsection, our synthesized MEG data set
is described, which is similar to AEF. This data is
synthesized from an artificial signal and a real mea-
sured MEG signal (see Fig. 1), and is used to accu-
rately evaluate the performance of source decomposi-
tion. The main advantage of our data set is that the
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Analysis of Averaged N-Trial Data
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Fig. 2 Procedure for averaging, source decomposition, automatic classification, source localization, and evaluation

5.2 Power of the decomposed components

It is well known that the amplitudes of the sig-
nals decomposed by ICA are not preserved. In order
to measure the power of the decomposed signals, the
procedure of data projection as described in Section
4.4 is applied . The virtual sensor signal coming from
the k-th (k = 1,---,7) individual component is rep-
resented as Eq. (21). In this work, the average of the
virtual sensor signal from the k-th individual compo-
nent is defined as:

1 M
= —MZQk,i(t), =1,---,7n (23
i=1
where t represents sample number, t = 0 (0 sec.),

125 (0.5 sec.), M = 64 denotes the number of sensors
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and X; ; denotes the virtual sensor signal at channel
i (i = 1,---,64) coming from the k-th decomposed
components. Therefore, v; represents the averaged
virtual sensor signal, and its amplitude is not ambigu-
ous.

Using the above results, the power of the k-th out-
put vy is defined as

N
Poc = 3 vi(vE()
t=0

where N = 125 denotes the number of data samples.
Using Py as the power of the k-th decomposed com-
ponents, the power of individual components can be
compared.

(24)
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5.3 Simulation and evaluation methods

In this subsection, the simulation and evaluation
methods are explained. To investigate the relation-
ship between the performance of source decomposition
and the number of averages, 1) the ratio of source de-
composition, 2) the power of decomposed components,
and 3) the accuracy of source estimation are demon-
strated.

The procedure of analysis of the averaged N-trial
data is shown in Fig. 2. In this study, we take averages
across different numbers of trials from 1 to 50 (N =
1,---,50 in Fig. 2). In each averaging process, 30
different data sets are used as the input data (i =
1,---,30 in Fig. 2).

5.3.1 Automatic classification approach

In this study, the decomposed evoked field signal,
the electrical power interference and the spontaneous
a-wave are investigated. Here, the procedure of auto-
matic classification of the decomposed components is
described.

First, the power of each decomposed component
in the time domain from 0 sec. (¢ = 0) to 0.5 sec.
(t = 125) is calculated using Eq. (24). To define
the criterion for classifying the decomposed compo-
nents into the evoked field signal, the power of each
decomposed component in the duration from 0.2 sec.
(t = 50) to 0.3 sec. (t = 75) is calculated as

75

=Y Vi)V (D) (25)

t=50

Using the above results, the ratio

v _ Py
vk ka (26)
is defined. When R!,, > kgp (positive constant), the
decomposed component v is the evoked field signal,
since the evoked field signal is artificially evoked from
0.2 to 0.3 sec.
Similarly, to define the criterion for classifying the
decomposed components into the electrical power in-
terference and spontaneous a-wave, the power of each

decomposed component in the frequency domain from
0 Hz (f = 0) to 124 Hz (f = 62) is calculated as

62

Py = z Vi(HVE) (27)
f=0

where V. (f) denotes the power spectrum of v, () and

f denotes the sample number, f = 0 (0 Hz), --- 62

(124 Hz). Next, that from 48 Hz (f = 24) to 52 Hz

(f = 26) and that from 8 Hz (f = 4) to 12 Hz (f = 6)

are calculated as

26
Py =Y Vi(H)VE(F) (28)

f=24
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Fig. 3 Averaged waveforms of the 1st to 30th trial
data: horizontal axis and vertical axis express
time from 0 to 0.5 sec. and amplitude from
-0.3 to 0.3 pT, respectively.

6
Py, =Y Vi(HVi () (29)
f=4
respectively, and then the ratios
Pl PII
Ry = 5%,  Ryp= 32 30
Vk PVk Vk PVk ( )

are defined. When Ry, > k. (positive constant) or
RY;, > ko (positive constant), the decomposed com-
ponent vi is the electrical power interference or a-
wave component, respectively.

Based on earlier experiments, for this experiment,
these parameters are set as kgrp = 0.6, k. = 0.4 and
ks = 0.35, respectively. The parameters k are deter-
mined by the following conditions. a) Only one com-
ponent (evoked field signal, electrical interference, a-
wave, or other components) can be decided from one
decomposed component (vi). b) In case more than
two decomposed components are decided as the same
kind of component, these component are regarded as
the same component. ¢) The number of definite com-
ponents from all decomposed components will become
the maximum.

5.3.2 Evaluation methods

In order to study the ratio of source decompo-
sition, we count the number of decomposed evoked
field signals (ngr), electrical power interferences (n.)
and spontaneous a-waves (n,) in 30 simulations (i =
1,---,30), as shown in Fig. 2, and then calculate their
ratios:

Ratiogr = %%ﬁ, Ratio, = g—s and Ratio, = g—o
(31)
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Table 1 Estimated map and estimation error for averaged 30-trial data with application of the JADE algorithm

dipole location (mm)

direction vector (deg.)

x z r az dec ©
true evoked field 10.0 10.0 60.0 | -— 50.0 103.0 —
averaged observation -0.1 00 698|173 47.7 899 13.3

result of pre-whitening and JADE 1.0

84 70.3|136 | 464 955 8.3

2 x 10714 o x107°
>0 W > /x\,vL
-2 0 .A
.15 -13
o x107 1 x10
N
3o W\/WW\/\/\MAM/VW\MMM S A
-2 0 o
-15 -13
5 x 10 > x 10
w 0 WW 2 M
>
5 o A
2 X 10°15 5 x 1071¢
T o0 W/M I
2 0
0 0.2 0.4 0 50 100
Time (sec.} Frequency {Hz)

Fig. 4 Result of source decomposition and its fre-
quency contents for averaged 30-trial data
with application of the JADE algorithm

In order to investigate the relationship between the
power of the decomposed components and the number
of averages, we take the averages of the power of de-
composed evoked field, electrical power interference,
and spontaneous a-wave as

1 (i)

Power = — P

EF nEin: EF

1 .

Power, = —Y PY
Ne
1 i

Power, = EZPC(‘) (32)

respectively (See Fig. 2). Here, PI(;E7 denotes the
power of the evoked field signal decomposed from the
i-th data set, and Pe(i) and Péi) denote that of the
electrical power interference and the a-wave, respec-
tively.

To investigate the accuracy of source estimation,
we apply dipole estimation, focusing on the evoked re-
sponse, to averaged observation and the decomposed
evoked signal. Since the dipole locations and the di-
rection vector of the evoked field are known in ad-
vance, the estimation error of the evoked field can be
obtained, by comparing the true and estimated ones.
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Fig. 5 Estimated map focusing on evoked field: (a)
averaged data, (b) decomposed evoked field

The standard spatio-temporal dipole fitting routine,
MEG v3.3a (CTF System Inc., Canada), is used to
locate the dipole.

The distance between the true dipole location
([, ¥, 2] mm) and the estimated dipole location
([Z, ¥, z] mm) is obtained as

r=VE-PF - - (39)

When combining the starting points of the two vec-
tors, the angle © between the direction vectors of the
true and estimated evoked fields is obtained as

© = cos™[sin(d)sin(d)cos(a — @) +cos(d)cos(zi)] (34)

where o and d denote the azimuth and declination
(deg.), respectively. To compare these errors, the av-
erages are calculated as

1

Error, = —— ()
NEF
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1 .
Errore = — o (35)
EF <

Here, r(¥) denotes the error r derived from the i-th
data set, and O denotes that of ©.

6. Simulation Results

6.1 Results of source decomposition using the JADE
algorithm

In this subsection, the results of the source decom-
position and localization for the averaged 30-trial data
(Fig. 3), with application of the JADE algorithm, are
demonstrated. In Fig. 3, the horizontal axis and verti-
cal axis express time from 0 to 0.5 sec. and amplitude
from —0.3 to 0.3 pT, respectively.

First, the number of sources is estimated under
the criterion of choosing the number of sources as de-
scribed in Section 3.2. In this simulation, it is de-
cided when the cumulative percentage variance con-
tribution as shown in Eq. (8) becomes larger than
75 %. In applying this method, the cumulative per-
centage variance contributions for a given value of 71
become ¢, = 34.03, 59.81, 69.53, 76.22 (k= 1,---,4),
and the number of sources is assumed to be 1 = 4.

Next, the robust pre-whitening technique and
JADE are applied. The results v and the power spec-
tra V are shown in Fig. 4. After applying the auto-
matic classifying approach to these decomposed com-
ponents, vy, vo and v, in Fig. 4 are regarded as evoked
field response, electrical power interference, and spon-
taneous a-wave, respectively.

The estimated maps derived from the averaged ob-
servation and decomposed evoked response are shown
in Fig. 5. In this figure, the top ‘Measured’ map is
derived from a decomposed component. The mid-
dle ‘Theoretical’ map is computed from the moving
dipoles. The bottom ‘Difference’ map represents the
difference between the ‘Measured’ and ‘Theoretical’
maps. As for the result of using the evoked response,
note that the evoked response appears on the left area
of the brain. The estimated evoked field is shown in
Table 1. Comparing the results of JADE and taking
averages, both the source location and direction vec-
tor are rendered more accurate by applying the JADE
algorithm.

6.2 Relationship between the performance of decom-
position and the number of averages

In this subsection, the relationships between the
performance of decomposition and the number of aver-
ages using JADE, Fast-ICA and the natural gradient-
based algorithm are demonstrated.

The relationship between the ratio of source de-
composition, calculated by Eq. (31), and the number
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Fig. 6 Decomposition ratios and the number of aver-
ages across data trials focusing on: (a) evoked
fields response, (b) electrical power interfer-
ence, and (c) spontaneous a-wave component
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Fig. 7 Power of decomposed components with ap-
plication of JADE, Fast-ICA and the natu-
ral gradient-based algorithm, focusing on: de-
composed evoked response, electrical interfer-
ence and a-wave component

of averages is shown in Fig. 6. In these figures, the hor-
izontal axis expresses the number of averages from 1
to 50 trials and the vertical axis expresses these ratios.
There are several points to note in these figures. The
ratios of the evoked field signal and electrical power
interference are very low when the number of averages
is small, but when the number of averages is large, the
ratios are high. Note that, in this simulation, the elec-
trical power interference is synchronous with the cy-
cle of trials. In contrast, the ratio of the spontaneous
a-wave component is high when the number of aver-
ages is small, but the larger the number of averages,
the lower the ratio. Considering the characteristics
of taking averages, these results appear to be valid.
Comparing the results of applying JADE, Fast-ICA
and the natural gradient-based algorithm, the highest
ratio of the source decomposition of an evoked field
signal can be obtained when applying the JADE al-
gorithm. Regarding the ratios of the electrical power
interference and a-wave component, there is not a sig-
nificant difference between these results.

The relationship between the power of each decom-
posed component and the number of averages is shown
in Fig. 7. Regarding the power of the evoked response,
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Fig. 8 Estimation error with application of JADE,
Fast-ICA, and the natural gradient-based al-
gorithm : (a) dipole location, and (b) direction
vector

it is not influenced by taking an average. The results
of applying the JADE algorithm appear to be constant
against the number of averages. This means that the
JADE algorithm is efficient for source decomposition
and estimation. But with respect to the single-trial
data analysis, the power of the evoked field becomes
very large, because of the influence of additive noise.
In contrast, regarding the power of electrical power
interference and a-wave, the larger the number of av-
erages, the lower these powers become. This means
that the power of decomposed electrical power inter-
ference is influenced by an a-wave or other high power
noise components. Here, in case the number of aver-
ages is one or two, the power of the electrical power
interference becomes zero, because this signal could
not be decomposed in such cases.

The accuracy of source estimation, the relation-
ship between the estimation error of evoked field and
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the number of averages, is shown in Fig. 8. In this
experiment, we apply the dipole estimation of the
evoked response, in case the ratio of source decom-
position of the evoked field signal (Ratiogr) becomes
Ratiogr > 0.7. Given these results, regardless of the
analysis, the larger the number of averages, the lower
the estimation error becomes. Comparing the results
of averaged data with the decomposed evoked field,
regardless of the number of averages, the evoked field
signal is accurately decomposed by applying any ICA
algorithm. This means that the number of averages
can be reduced by applying the ICA approach.

Given the results of the three kinds of experiments
conducted for the evaluation of source decomposition,
the JADE algorithm is slightly effective for our MEG
data analysis.

7. Conclusions

In this work, the relationship between the perfor-
mance of source decomposition and the number of av-
erages across data trials was investigated. Moreover,
a number of existing ICA algorithms such as JADE,
Fast-ICA, and the natural gradient-based algorithm
with a robust pre-whitening technique were used to
decompose the MEG data. Our results show the re-
lationship between the accuracy of source decompo-
sition and the number of averages, and by applying
the ICA approach, the number of averages can be re-
duced. These results confirm the effectiveness of the
developed methods of data analysis.
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