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1. Introduction

Independent component analysis (ICA) has been applied to
electroencephalographic (EEG) or magnetoencephalographic
(MEG) data to determine the behavior and localization of
brain sources [1, 2, 3, 4, 5, 6]. When detecting an MEG sig-
nal, spontaneous and environmental noises may seriously ef-
fect recorded data because the magnetic field of brain signals
is weak, particularly in the case of non-averaged single-trial
data. The most widely used technique for reducing instru-
mental and environmental noises is to take an average across
many stimulation trials. In fact, when applying ICA to MEG
data, most researchers have treated averaged data. However,
by taking an average, important information is lost, making it
advantageous to decrease the number of averages across data
trials. The disadvantage of having fewer averages is that be-
cause SNR is very poor, the decomposition of a low-power
source signal from recorded data is still influenced by noise.

In this paper, we deal with non-averaged single-trial data
and averaged multiple-trials data, in order to study the rela-
tionship between the accuracy of decomposed brain sources
and the number of averages across data trials. To evaluate the
results of the performance of decomposition, we focus on: 1)
the power of decomposed components and 2) the accuracy of
source estimation.

When applying ICA to physiological data, most re-
searchers have used real, measured, physiological data and
evaluated the decomposed components for neuroscience per-
spective. In this study, we use a synthesized MEG data set,
which includes an artificial evoked field and real, measured
brain data. The behavior of our data set is similar to auditory
evoked fields (AEFs). The main advantage of our data set
is that dipole location of evoked responses and its dynamics
are known in advance, which facilitates the evaluation of the

Figure 1: An example for data synthesizing: (left) artificial
EF signals, (middle) real measured MEG signals, (right) syn-
thesized signals.

decomposed components.

2. Data Analysis Method

2.1. Data Analysis Model

In this section, we describe the model for applying ICA to
MEG data. Based on the principle of MEG measurement, this
problem can be formulated as

x(t) = As(t) + e(t), (1)

where x(t), s(t) and e(t) represent the transpose of m obser-
vations at time t, n unknown source components and additive
noise, respectively. Since neither human tissue nor skull at-
tenuate magnetic fields in MEG, A can be represented by a
numerical matrix whose element aij is simply a quantity re-
lated to the physical distance between the i-th sensor and the
j-th source.

In the model, s(t), e(t), A and n are unknown but x(t) are
accessible. It is assumed that the components of s(t) are mu-
tually statistically independent, as well as statistically inde-
pendent of the noise components (e(t)). Moreover, the noise
components themselves are assumed to be mutually indepen-
dent.
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Figure 2: (a) Sensor distribution. (b) 3D frames of reference. (c) Distance r between true and estimated dipole location and
angle Θ between true and estimated direction vector.

Table 1: Artificial evoked fields.

peak time location vector moment
(sec.) x, y, z (mm) az, dec (deg.) Q (nAm)
0.25 10.0, 10.0, 60.0 50.0, 103.0 40.0

2.2. Pre-whitening

In this subsection, we describe our robust pre-whitening
technique [2, 3]. This technique is very effective in reduc-
ing the power of sensor noises. Applying our robust pre-
whitening technique, a new data vector can be obtained by

z(t) = Qx(t). (2)

where the power of noises, mutual correlation and dimen-
sionality have been reduced. Here, Q∈Rn×m is termed
the transform matrix which can be obtained as Q =
[ÂT Ψ̂

−1
Â]−1ÂT Ψ̂

−1
. For this technique, A and Ψ can be

estimated as Â = Un̂Λ
1
2
n̂ and Ψ̂ = diag(XXT − ÂÂT ) by

applying the standard PCA approach and the eigenvalue de-
composition method, respectively. Here X denotes a data ma-
trix of x, Λn̂ is a diagonal matrix whose elements are eigen-
values of XXT , the columns of Un̂ are the corresponding
eigenvectors and n̂ is the estimated number of sources.

A similar noise reduction approach that applies factor anal-
ysis (FA) to the decomposition of MEG data has been re-
ported in [4]. Both this method and ours take additive noises
into account, but with our robust pre-whitening technique,
the distribution of additive noises is not restricted. There-
fore, our technique is more robust and effective for data with
non-Gaussian noises such as the outlier.

2.3. ICA algorithm

After pre-processing the data, the decomposed independent
sources y∈Rn can be obtained from a linear transformation
as

y(t) = Wz(t) = WQx(t), (3)

where W∈Rn×n is termed the demixing matrix which can
be computed by using the JADE algorithm [5].

The JADE algorithm has two procedures termed “orthog-
onalization in PCA” and “rotation”. We applied the rotation
procedure in the JADE algorithm and calculate the correct
rotation matrix W. But instead of the orthogonalization in
PCA, we applied our robust pre-whitening technique.

To compare the power of decomposed components, we
forced every element to be zero except the k-th (k =
1, · · · , n̂) of y(t) and obtained the virtual sensor sig-
nals coming from k-th individual components as x̂k(t) =
ÂW−1[0 · · · yk(t) · · · 0]T . Using the above result, the to-
tal sum of each virtual sensor signal coming from the
k-th individual component can be obtained by vk(t) =
1
M

∑M
i=1 x̂k,i(t), where M denotes the number of sensors

and x̂k,i denotes the k-th decomposed components of y(t)
into the i-th sensor.

In this study, we define the power of the k-th decomposed
components vk as Pvk =

∑N
t=1 vk(t)vT

k (t), where, N de-
notes the number of data samples. Applying Pvk as the power
of the k-th decomposed components, we can compare the
power of individual components decomposed by ICA.

3. MEG data Analysis

3.1. MEG data set

In this subsection, we describe the synthesized MEG data
set, which is similar to AEFs, used for simulation. We syn-
thesized an artificial signal and a real measured MEG signal
which was recorded by using an Omega-64 (CTF Systems
Inc., Canada) (see Fig. 1). The sensor arrays consisted of 64
channels (see Fig. 2(a)). The sampling rate was 250 Hz with
a duration of 50 sec.. The observed data was segmented into
100 trials, so the duration of each trial is 0.5 sec. and each
trial has 125 samples, where i denotes the trial number.

The source signals in this data set include evoked field re-
sponse as well as the 50 Hz electrical power interference and
the α-wave component involved in the real measured MEG
data. The evoked field signal was artificially evoked from 0.2
sec. to 0.3 sec. with a peak at 0.25 sec. (see Fig. 1). The
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Figure 3: (a) Averaged of 50 trials from 1 to 50 trial. (b) Result of source decomposition and its frequency contents. (c)
Estimated map focusing on evoked field,

location [x, y, z] (mm), direction vector [azimuth: az, dec-
lination: dec] (deg.), and dipole moment Q (nAm) are set as
shown in Tab. 1, where a head model presupposes a sphere
with a radius of 75 mm and 3D frames of reference are set
according to Fig. 2(b).

3.2. Simulation Method

In this subsection, we explain the simulation method and
evaluation method. To study the relationship between the ac-
curacy of decomposed brain sources and the number of aver-
ages across data trials, we take averages across different num-
bers of trials from 1 to 100-trials. In each averaging process,
we use 30 moving samples.

In this study, we focused on the decomposed evoked field
signal, α-wave component and electrical power interference.
To classify the decomposed components into these 3 compo-
nents, we apply an automatic classifying approach [2].

To study the relationship between the power of decom-
posed components and the number of averages, we take an
average of the power of decomposed evoked field signal,
α-wave component and electrical power interference. To
study the relationship between the estimation error of evoked
field and the number of averages, we apply dipole estima-
tion focusing on evoked response to observed signal and the
decomposed evoked signal. We used the standard spatio-
temporal dipole fitting routine, MEG v3.3a (CTF System Inc.,
Canada), to locate the dipole. In this study, since dipole lo-
cations and direction vector of evoked field were known in
advance, we can compare them to the estimated ones. Here
we define the distance r between true and estimated dipole lo-
cation and the angle Θ between true and estimated direction
vector as

r =
√

(x − x̂)2 + (y − ŷ)2 + (z − ẑ)2, (4)

Θ = cos−1[sin(d)sin(d̂)cos(a − â) + cos(d)cos(d̂)] (5)

respectively, where a denotes azimuth (deg.) and d denotes
declination (deg.) (see Fig. 2(c)).

3.3. Simulation Results

In this subsection, we first demonstrate the results of the
source decomposition and localization for the averaged 50-
trials data, as shown in Fig. 3(a). In this figure, the horizontal
axis and vertical axis express time from 0 to 0.5 sec. and am-
plitude from -0.5 to 0.5 pT. In this simulation, the number of
sources is assumed to be n̂ = 4. The results v(t) and the
power spectrums Vk(f) are shown in Fig. 3(b).

Applying automatic classifying approach to these decom-
posed components, v1 and v2 in Fig. 3(b) are regarded as
electrical power interference and evoked field response, re-
spectively. The estimated maps derived by averaged obser-
vation and decomposed evoked response are shown in Fig.
3(c). In these figures, the amplitude information appears in
the color scale bar. As for the result of evoked response, note
that the evoked response appears on the left-front area of the
brain. The estimated dipole information of evoked field is
shown in Tab. 2. Comparing the results of the ICA and taking
averages (before ICA), we conclude that both source location
and direction vector become more accurate by applying our
ICA approach.

Next, we demonstrate the relationship between the power
of each decomposed component and the number of averages.
The results are shown in Fig. 4. As for the power of electri-
cal power interference and α-wave component, the larger the
number of averages, the lower the power of these components
become. This means that these components are influenced by
taking an average. In contrast, the power of evoked response
is not influenced by taking average. This means that our ICA
approach is very efficient for source decomposition and es-
timation. But as for single-trial data analysis, the power of
evoked field becomes very large, because of the influence of
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Table 2: estimated map and estimation error

dipole location (mm) direction vector (deg.)
x y z r az dec Θ

true value 10.0 10.0 60.0 - 50.0 103.0 -
before ICA 6.1 25.3 64.9 16.5 54.5 111.5 9.6
after ICA 9.8 11.6 71.5 11.6 56.3 101.9 6.3

(a) (b) (c) (d)

Figure 4: power of decomposed components： (a) averaged observation (b) decomposed evoked response (c) decomposed
electrical interference (d) decomposed α-wave component

(a)

(b)

Figure 5: estimation error: (a) dipole location (b) direction
vector

additive noise.
Finally, we demonstrate the relationship between the esti-

mation error of each decomposed component and the number
of averages. The results are shown in Fig. 5. These results
show that, by applying our ICA algorithm, we can reduce the
number of average across data trials. Moreover our ICA ap-
proach is more effective for the analysis of data with fewer
averages than with more averages.

4. Conclusions

In this paper, we performed source decomposition of av-
eraged multiple-trials MEG data using our ICA approach.
Our results showed the relationship between the accuracy of
source decomposition and the number of averages across data
trials.
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