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In this paper, single-trial and averaged multiple-trials data are analysed applying proposed robust pre- .~~~
whitening technique with independent component analysis (ICA), in order to study the performance of SOUTCE vy s sew
decomposition in each case. To evaluate the performance of source decomposition, we use a synthesized MEG o« :
data set. The main advantage of our data set is that dipole location of evoked responses and its dynamics are
known in advance, which facilitates the evaluation of the decomposed components. Moreover, some existing
ICA algorithms such as JADE, Fast-ICA, and Natural gradient-based ICA with robust pre-whitening technique %
are used to eliminate brain noise. Our results show the performance of source decomposition applying proposed %%

approach and the effectiveness of JADE algorithm for our MEG data analysis.
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Figure 1. An example for data synthesizing.
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INTRODUCTION

When detecting an MEG signal applying ICA, spontaneous and environmental noises may seriously
affect recorded data because the magnetic field of brain signals is weak. The most widely used technique
for reducing noises is to take averages across many stimulation trials. However, by taking averages,
important information such as the trial-by-trial variation will be lost, making it advantageous to decrease
the number of averages across data trials. The disadvantage of having fewer averages is that because SNR
is very poor, the decomposition of a low-power source signal from recorded data is still influenced by
noise. In this paper, we deal with both single-trial and averaged multiple-trials data, in order to study the
accuracy of source decomposition in each case.

Figure 2. Distance and angle between
true and estimated evoked fields.
MEG DATA SET
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In this study, we use a synthesized MEG data set, which includes an artificial evoked field and
real measured data (recorded by Omega-64). The behavior of our data set is similar to auditory
evoked fields (AEFs). The sampling rate was 250 Hz with duration of 40 sec. and our data set was
segmented into 80 trials. The source signals in this data set include evoked field response as well as
the electrical power interference and the alpha-wave component involved in the real measured MEG
data. The evoked field signal was artificially evoked from 0.2 to 0.3 sec. with a peak at 0.25 sec. (see
Fig. 1). Dipole location, direction vector, and dipole moment of evoked field are set at [x, y, z]=[10,
10, 60} mm, {az, dec]=[50, 103} deg., and Q=40 (nAm), where a head model presupposes a sphere
with a radius of 75 mm.
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SIMULATION AND EVALUATION METHODS
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In order to decompose brain sources, we apply the JADE [1], Fast-ICA {2], and natural

gradient-based algorithm [3]. Moreover, we introduce our robust pre-whitening technique [4] for
pre-processing. This technique is very capable of reducing the power of additive noises. A similar
noise reduction approach that applies factor analysis to the decomposition of MEG data has been
reported. Both this method and ours take additive noises into account, but with our robust pre-
whitening technique, the distribution of additive noises is not restricted. Therefore, our technique is
more robust and effective for data with non-Gaussian noises such as the outlier. In order to investigate
the performance of source decomposition, we focus on: 1) the accuracy of source estimation, and 2)
the power of decomposed components. In this study, we take averages across different numbers of
trials from 1 to 50 trials, and in each averaging process, we use 30 moving samples.

To investigate the accuracy of source estimation, we apply dipole estimation to averaged
observation and the decomposed evoked signal focusing on evoked response. Since dipole location
and direction vector of evoked field were known in advance, the estimation error of evoked field can
be obtained, comparing the true and estimated ones. We used the standard spatio-temporal dipole
fitting routine, MEG v3.3a (CTF System Inc., Canada), to find the dipole. The distance between true
and-estimated source locations and the angle between true and estimated direction vectors, used for
evaluation of source decomposition, are obtained as (see Fig. 2),

r= {(Jc—fc)2 + (=P +(z-2) }”2, 6= cos"{sin d sin d cos(a — &)+ cos d cos d } (H
In order to investigate the power of decomposed components, we take averages of the power of

decomposed evoked field signal, electrical power interference, and alpha-wave component, in each
number of averages.

Figure 3. Averaged of 10 trials. The
horizontal and vertical axes express time (0 -
0.5 sec.) and amplitude (-0.3 to 0.3 pT),
respectivelv.
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Figure 4. Result of source decomposition
and its frequency contents.
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RESULTS

We first demonstrate the results of the source decomposition and localization, using the JADE
algorithm, to the averaged 10 trials data as shown in Fig. 3. The results v(t) and the power spectra V(f) are
shown in Fig. 4. Applying automatic classifying approach [5] to these decomposed components, v1, v2
and v3 in Fig. 4 are regarded as electrical power interference, evoked field response, and alpha-wave
component, respectively. The estimated maps derived by averaged data and decomposed evoked response
are shown in Fig. 5. Note that the evoked response appears on the left-front area of the brain. The
estimated evoked field and the estimation error are shown in Tab. 1. Comparing the resuits of the JADE
and taking averages, we conclude that estimated cvoked field becomes more accurate by applying
proposed approach.

Here, we demonstrate the performance of JADE, Fast-ICA, and natural gradient-based algorithm with
robust pre-whitening technique. The accuracy of source estimation, the estimation error of evoked field
calculated by Lq. (1), is shown in Fig. 6. Given these results, regardless of the analysis, the larger the
number of averages, the lower estimation crror becomes. Comparing the results of averaged data with
decomposed evoked field, regardless of the number of averages, evoked field signal is accurately
decomposed by applying any ICA algorithm. This means that estimated evoked fields derived by
proposed approach are more accurate than those of taking averages and the number of average can be
reduced by applying proposed approach.

The relationship between the power of each decomposed component and the number of averages is e
shown in Fig. 7. As for the power of electrical power interference and alpha-wave component, the larger
the number of averages, the lower the power of these components become. This means that these
components are influenced by taking averages. In contrast, the power of evoked response is not Figure 5. Estimated map focusing on
influenced by taking averages. The results of JADE algorithm especially appear to be stable against the e\{oked field: (left) averaged data, and
number of averages. This means that JADE algorithm is very efficient for our data analysis. But, as for (right) decomposed evoked field.
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single-trial data analysis, the power of evoked field becomes 1 o . i . L
very large, because of the influence of additive noise. T meraged o T reamed
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In this paper, the performances of source decomposition %222 %zﬁ
applying 1CA with robust pre-whitening technique for § °
single-trial and averaged MEG data are investigated. &g ém
Besides, some existing [CA algorithms are used to eliminate % . ) s, .
brain noise from MEG data. Our results show the 14 . N
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approach, the number of average can be reduced. These number of average ruetiber of averae
results strictly confirmed the effectivencss of developed
analysis methods. . o )
Figure 6. Estimation error applying JADE, Fast-ICA, and natural gradient-
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Table 1. Estimated map and estimation error. o 2 I 8 I \
Dipole location (mm) Direction vector (dec.) o8 ;l_\-‘,lg;;m - B !!5;’1 I“!‘:,‘Jo
X y 2 ¢ a7 dCC theta number of average number of avarage numb;l of average
True vatue 100 100 60.0 - 50.0 103.0 - Figure 7. Power of decomposed components :
Before ICA | 164 147 37.7 237|407 1203 19.3 (a) JADE, (b) Fast-ICA, and (c) natural
After ICA -2.1 0.6 615154 1482 891 14.0 gradient-based algorithm.
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