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Abstract: Voice activity detection (VAD) in noisy environments is a very important preprocessing
scheme in speech communication technology, a field which includes speech recognition, speech
coding, speech enhancement and captioning video contents. We have developed a VAD method for
noisy environments based on the modulation spectrum. In Experiment 1, we investigate the optimal
ranges of speech and modulation frequencies for the proposed algorithm by using the simulated data in
the CENSREC-1-C corpus. Results show that when we combine an upper limit frequency between
1,000 and 2,000 Hz with a lower limit frequency of less than 300 Hz as speech frequency bands, error
rates are lower than with other bands. Furthermore, when we use the frequency components of the
modulation spectrum between 3–9, 3–11, 3–14, 3–18, 4–9, 4–11, 4–14, 4–18, 5–7, 5–9, 5–11, or 5–
14 Hz, the proposed method performs VAD well. In Experiment 2, we use one of the best parameter
settings from Experiment 1 and evaluate the real environment data in the CENSREC-1-C corpus by
comparing our method with other conventional methods. Improvements were observed from the VAD
results for each SNR condition and noise type.
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1. INTRODUCTION

Voice activity detection (VAD) is a very important

preprocessing scheme in many fields, such as speech

recognition, speech coding, and digital hearing aids.

Recently, the growth of high-speed internet communication

has encouraged people to electronically exchange thou-

sands of videos around the world. Sharing foreign movies

creates a large demand for translation work. When trans-

lating videos or movies, the end points of speech are often

hand labeled by translators. This extra work for translators

adds significant time and expense. Thus, VAD systems

have played an important role in video captioning.

In previous studies, researchers have proposed various

approaches to VAD and peripheral techniques. Rabiner and

Sambure [1] propose a technique using the power and zero-

crossing rate (ZCR) of the signal to detect word boundaries

in speech. The International Telecommunication Union

adopted an international speech standard known as G.729

for VAD [2]. This algorithm uses ZCR, a linear prediction

spectrum, and full-/low-band energy as its features.

Another method for automatic speech detection using

linear prediction was also introduced [3]. This technique

analyzes the characteristics of speech, determines the end

points of each speech portion, and automatically creates a

time code, which supports the translation work for video

captioning. However, these approaches are not robust in

low signal-to-noise ratio (SNR) environments. Thus, many

researchers have studied different strategies for detecting

speech in noise [4]. To improve detection rates, many

researchers focus on different acoustic properties of the
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speech signal and noise, such as the frequency character-

istics of speech. Other studies deal with noise in speech by

estimating the noise spectrum and using the SNR of a

signal. Sohn et al. [5] proposed a robust VAD technique

based on a statistical model which requires prior knowl-

edge of noise. European telecommunications standard has

been recommended ES 202 050 (advanced front-end) [6]

for VAD based on energy values across the whole spectra

to design Wiener filters, the spectral sub-region, and

spectral variance of each frame. The spectral divergence

proposed by Ramirez et al. [7], periodic to aperiodic

component ratio (PARADE) of speech covers a wide range

of noise [8]. These methods work well in stationary noise

but have problems with non-stationary noise.

Other acoustic characteristics have also been studied

such as acoustic features based on temporal processing.

Markaki and Stylianou [9], design an algorithm to exploit

long term information inherent in the modulation spectrum.

This study used joint acoustic and modulation frequency

subspaces with higher energy. Modulation frequency

components up to 250 Hz are used. This modulation

frequency range is much higher than that used for

automatic speech recognition [10–12] and faces a dimen-

sionality reduction problem. Another VAD scheme based

on the modulation spectrum was presented in Shadevsky

and Petrovsky [13], in which a speech signal is split into

multiple frequency bands and temporal envelopes are

calculated for the frequency bands. In each temporal

envelope, the whole modulation frequency components

between 1 to 16 Hz are compared with other modulation

components outside the range to enhance speech compo-

nents and suppress noise components. Finally, this algo-

rithm uses summed speech envelopes obtained from each

frequency band. Unfortunately, these techniques do not

investigate either an optimal speech frequency range (SFR)

or an optimal modulation frequency range (MFR) in the

lower modulation frequencies between 1 and 16 Hz.

Moreover, it is less effective to use frequencies higher

than 4,000 Hz as speech information. In contrast, noise

often contains a certain amount of energy in such high

frequencies. In addition, the modulation spectrum in a

broad SFR is generally more flat than the one in a narrow

SFR, because the temporal modulation among several

frequency bands are averaged and have fewer sharp peaks

from the modulation spectrum when they are combined

[14]. Thus, the broad SFR may not be able to detect speech

portions as accurately as the narrow SFR. In fact, different

SFRs yield different temporal envelopes, and as a result,

temporal contours of the feature value are different (see

Section 2, Fig. 3). Therefore, limiting SFR is also very

important as well as limiting MFR in noisy environments.

Consequently, in this study we will find the common

optimal SFR among various noise types, while previous

studies, such as, Shadevsky and Petrovsky [13], use all of

the frequency bands including higher frequencies.

In this paper, we propose a VAD technique based on

the modulation spectrum where an optimal SFR is inves-

tigated for speech data. In Section 2 we describe this

technique which uses the modulation index as a VAD

feature value in background noise with an SNR of less than

30 dB. We further investigate an optimal MFR in lower

modulation frequencies for each SFR by using fine

bandpass filters in the modulation frequency domain to

determine which components among them are important

for VAD.

This paper is organized as follows. In Section 2, we

describe a method to detect voice activity based on the

modulation spectrum. In Section 3, we introduce Experi-

ment 1, the aim of which is to investigate the optimal

speech and modulation frequency ranges for this algorithm.

In Section 4, we describe Experiment 2, which uses the

best parameter settings from Experiment 1 to evaluate

various data using the receiver operating characteristic

curve and compare our proposed method with other

conventional methods. Finally, a conclusion and future

work are presented in Section 5.

2. THE MODULATION SPECTRUM

The modulation spectrum of speech is a frequency

representation of temporal envelopes in which the hori-

zontal axis is the modulation frequency and the vertical

axis is the modulation index. Perceptual experiments [15]

have shown that some components of the modulation

spectrum are more important than others. In an environ-

ment with no noise, or a clean environment, the modu-

lation frequency components between 1 and 16 Hz are

important in preserving the intelligibility of speech

[16–18]. Kanedera et al. [10–12] suggested that most of

the information in the modulation frequency necessary for

automatic speech recognition in a clean environment

occurs in the same modulation frequency range, 1 to

16 Hz. In particular, the syllabic rate, at a modulation

frequency of 4 Hz, is the most important component

[17,19]. Additionally, researchers have used modulation

components around 4 Hz to identify speech and music [20].

In keeping with these findings, using information above

16 Hz and below 2 Hz is not as useful for noisy speech, and

it may actually degrade recognition performance.

In this study, we initially conducted an experiment

using fixed modulation frequencies of 2–16 Hz containing

speech information to investigate the optimal SFR. We

then conducted a second experiment using the optimal SFR

obtained from the first experiment to investigate the best

MFR using our proposed method. The algorithm below is

necessarily an offline method because it requires lengthy

temporal information where delay is unavoidable.
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The calculation of modulation-based VAD features

proposed in this study is shown in Fig. 1. First of all, we

limited a full-band input speech x½n� to several subbands.

This is different from [21], where the input speech data were

first divided into temporal frames. To determine the optimal

SFR for VAD using the proposed method, we tested each

one of the subbands. For each subband, we calculated the

modulation spectrum based on the following algorithm.

First, we extracted the temporal envelope E½k� of each

subband by starting from the square amplitude of the band

limited signal xBPF½n�. We put the square amplitude into a

low-pass filter (LPF) with a cutoff frequency of 30 Hz and

then downsampled to 80 Hz (#M) to obtain E½k�, where k is

a new sample index, or the frame index, for the down-

sampled time domain. Next, the slowly varying modulation

movements, M½k; i� ði ¼ 0{15Þ, were calculated by putting

E½k� into a series of modulation bandpass filters with

lower and upper cutoff frequencies of fL ¼ 2i=3 [Hz] and

fU ¼ 2ðiþ1Þ=3 [Hz], respectively. We computed the root

mean square (RMS) of M½k; i� as the unnormalized

modulation index. Based on the original definition by

Houtgast and Steeneken [22], we determined the modu-

lation spectrum by dividing the unnormalized modulation

index by the average value of the whole temporal envelope

E½k�, that is,

MI½k; i� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XkþL�1

k0¼k
jM½k0; i�j2

vuut

1

K

XK�1

k0¼0

E½k0�
; ð1Þ

where the numerator is the RMS of M½k; i�, L is the length

of the time frame and K is the number of whole samples

of the temporal envelope. In this study, we define a

modulation spectrum as the modulation index MI½k; i�
as a function of the modulation frequency of mf ðiÞ ¼
ð fL þ fUÞ=2.

The normalized modulation indices MI½k; i� were then

averaged over an MFR and shifted frame by frame to

obtain a single feature value per frame. The average

of normalized modulation indices, MI½k�, is defined as

follows:

MI½k� ¼
1

iU � iL þ 1

XiU
i¼iL

MI½k; i�; ð2Þ

where iU and iL correspond the upper and lower limits of

the modulation frequency bands, so that the MFR is defined

as ½mf ðiLÞ;mf ðiUÞ�.
Figure 2 shows examples of the modulation spectra of

speech and noise signals in a frame. The modulation

spectra of clean speech and street noise were individually

calculated from the signals in the CENSREC-1-C corpus

[23]; the noises were white noise and babble noise obtained

from the NOISEX-92 corpus [24]. In this figure, the peak

of the modulation spectrum of speech is located between

2 and 8 Hz (round off values), whereas the modulation

spectrum of white noise is distributed over a wide range of

modulation frequencies, with several small peaks. Because

babble noise is what occurs when multiple speakers talk at

the same time, the modulation spectrum of babble noise

has a shape similar to that of speech in many cases. Still,

the modulation index value of babble noise is often lower

than that of speech. Furthermore, the three types of data:

speech, white noise, and babble noise used in Fig. 2 are

put into the algorithm separately, so the modulation index

values of speech put in separately are higher than those of

data in which speech and noise are combined, as in the case

of speech and white noise.
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Fig. 1 Overview of feature extraction based on the
modulation spectrum.
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Figure 3 shows the contours of the feature values based

on the proposed method with various SFRs and MFRs of

real noisy speech from CENSREC-1-C. Figure 3(b) and (d)

show the feature contours when SFR ¼ 0{4;000 Hz and

200–4,000 Hz, respectively. Figure 3(b) has a noisier

feature contour than the one in Fig. 3(d). When using

MFR ¼ 4{16 Hz as shown in Fig. 3(c) and (e), the

modulation index contours of both SFRs are less noisy

and the speech portion can be detected more accurately

than when MFR ¼ 2{16 Hz. In addition, the contour is

enhanced during some speech portions. Many kinds of

noise contain high frequencies; and in addition, some

noises have energy in the lower frequencies. Limiting the

frequency bands of noisy speech may well reduce the

influence of noise, but some speech information could also

be lost with too much filtering. Thus, we designed the next

two experiments to investigate the optimal SFR and MFR.

3. EXPERIMENT 1: INVESTIGATION
OF SPEECH AND MODULATION

FREQUENCY RANGES

3.1. Experimental Data

In Experiment 1, we used Japanese digits in the speech

corpus CENSREC-1-C [23]. This corpus has a sampling

frequency of 8 kHz, a 16 bit quantization, and an 11 word

vocabulary [the digits one through nine, zero, and ‘‘maru

(circle)’’]. The data consisted of two types: simulated data

and data recorded in real environments. The speech data

in the simulated environments were subway, babble, car,

exhibition, restaurant, street, airport and station, where

SNR was between �5 dB and 20 dB (in 5 dB increments)

and a clean environment (SNR of infinity). Speech data in

real noisy environments were recorded in school cafeterias

(restaurant) and at a place close to a highway (street) with

two SNR levels (low and high). The low SNR was defined

as a crowded restaurant (avg. 69.7 dBA) and near a main

highway (avg. 69.2 dBA). The high SNR was defined as an

uncrowded restaurant (avg. 53.4 dBA) and near a subsid-

iary highway (avg. 58.4 dBA).

3.2. Procedure and Evaluation

In a previous study [25], we used only one type of noise

(subway noise) to investigate SFR; however, we recognize

that different types of noise might yield different results.

Therefore, in Experiment 1, we used the proposed method

to examine the detection performance of speech in various

environments: subway, car, babble, restaurant and street

noises, which were provided in the corpus only in the

simulated environment. First, we fixed the MFR of the

input speech data in order to examine SFR. The fixed MFR

was between 2 and 16 Hz, because most of the speech

information crucial for intelligibility occurs in this range

[16–18]. Next, the optimal SFR was fixed and used to

examine MFR using different ranges, for example: 3–5 Hz,

4–7 Hz, and 5–10 Hz. The simulation data in the

CENSREC-1-C corpus are filtered by an ITU-T G.712

filter and the frequency band is limited to between 300 and

3,400 Hz. The frequencies below 300 Hz and over 3,400 Hz

might be attenuated but they are not exactly cut off

at 300 Hz or 3,400 Hz. In fact, the frequencies of the

simulation data tend to have speech information between

200–3,600 Hz. Consequently, we can use this speech

frequency range in Experiment 1.

The frame length was set at 112.5 ms (L ¼ 9), the

frame shift was set to 1/3 of the frame length and K is

approximately 3,200 samples depending on the input

sentence. The initial threshold of the modulation index

used to determine whether the target frame is speech or not

was determined by using the threshold selection method in

[23,26]. The optimal threshold, THR, is determined by the

following equation [23]:

THR ¼ THRint þ ðr � �Þ ð3Þ

� ¼ ðPOWh � POW lÞ=R; ð4Þ

where POWh is the average of the logarithmic frame

feature value (modulation index) which is equal to or

greater than the initial threshold, and where POW l is the

average of the logarithmic frame feature value which is less

than the initial threshold. The initial threshold (THRint) is

determined by using the threshold selection method in Otsu

[26]. In this experiment, R is set to 45 and r is set to 1.

The modulation indices within MFR were averaged to

obtain a single feature value MI½k�; if the value was greater
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than the threshold, we determined that frame to be speech,

if not, we considered it non-speech.

Previous studies have shown that when viewers watch

movies with captions, they prefer it when the captions

appear at the same time, and disappear just as or slightly

after the speaker finishes speaking [27,28]. Additionally,

Kitaoka et al. [23] showed that extending the speech

boundary by 200–300 ms can retain the accuracy of speech

recognition performance. Thus, we considered the 250 ms

after the end point of a speech portion to be a speech

period. Our goal is to apply this technique for a subtitle-

making system, which is an offline process that marks the

end points of speech segments and allows users to input

subtitles. Although movies contain natural speech, we use a

standard corpus to compare our proposed method with

other VAD techniques. This is because CENSREC-1-C is a

corpus that is often used to evaluate VAD performance.

Therefore, our purpose is to investigate whether our

method outperforms over other well-known methods

before testing its performance with natural speech.

To evaluate the results, we used false rejection rates

(FRRs) and false acceptance rates (FARs), defined as

follows:

FRR¼
number of incorrectly detected speech frames

number of hand labeled speech frames
ð5Þ

FAR¼
number of incorrectly detected non-speech frames

number of hand labeled non-speech frames

ð6Þ
When calculating multiple target data, we computed

FRR and FAR of every data point first and then evaluated

their mean value. Because FRR and FAR represent the

error rates of speech and non-speech, lower values are

desirable.

3.3. Experiment 1.1: Examining the Speech Frequen-

cy Ranges (SFR)

The experimental results with subway, car, babble,

restaurant and street noises are shown in Figs. 4–12.

Figures 4, 5 and 6 show FRR and FAR with subway

noise when SNR ¼ 0 dB, 5 dB and 10 dB, respectively.

Figures 7, 8 and 9 show FRR and FAR with car noise when

SNR ¼ 0 dB, 5 dB and 10 dB, respectively. Figures 10, 11

and 12 show the FAR and FRR with babble, restaurant and

street noises when SNR ¼ 5 dB.

For subway noise, FRRs for SNR ¼ 0 dB are around 17

to 20% when combining the lower limit of SFR ¼ 200 Hz

and the upper limit of SFR between 500 and 3,600 Hz.

When the lower limit is higher than the above frequency

ranges, FRRs increase. For example, when SFR ¼
300{500 or 500–2,000 Hz, FRR is approximately 27%.

When SFR ¼ 2;000{3;000 Hz, FRR is around 52% and

FAR is about 46%. When SFR ¼ 400{3;000, 500–3,000,

or 1,000–2,000 Hz, FAR is about 36%. FAR is around

31% when SFR ¼ 200{3;000, 200–3,600, or 300–3,000

Hz. However, FAR decreases to around 17% when SFR’s

lower limit between 200 and 300 Hz is combined with an

upper limit of SFR between 1,000 and 2,000 Hz. The same

trend was observed when SNR ¼ 10 dB and 5 dB,

although the error rates are lower than when SNR ¼ 0 dB.

For car noise, FARs for SNR ¼ 10 dB, 5 dB are

between 17% and 20% when combining SFR’s lower limit

of 200–300 Hz with an upper limit of 500–3,000 Hz. The

exception is SFR ¼ 300{500 Hz and 300–1,000 Hz, which

have lower error rates (about 15% for SNR ¼ 5 dB). When

the lower limit increases from 200 Hz to 300 Hz, the FRRs

of these SFRs increase from 6% to 12% for SNR ¼ 10 dB

and from 8% to 16% for SNR ¼ 5 dB. When combining

the lower limit of SFR ¼ 400 and 500 Hz with the upper

limit of 1,000–3,000 Hz, the results of the FARs are

constant but the FRRs tend to increase more than when

0
10
20
30
40
50
60
70
80
90

100

E
rr

or
   

ra
te

s 
(%

)

SFR (Hz)

FAR FRR

Fig. 4 Error rates of SFR (subway, SNR ¼ 0 dB).

0
10
20
30
40
50
60
70
80
90

100

E
rr

or
   

ra
te

s 
(%

)

SFR (Hz)

FAR FRR

Fig. 5 Error rates of SFR (subway, SNR ¼ 5 dB).

0
10
20
30
40
50
60
70
80
90

100

E
rr

or
   

ra
te

s 
(%

)

SFR (Hz)

FAR FRR

Fig. 6 Error rates of SFR (subway, SNR ¼ 10 dB).

K. PEK et al.: VAD IN NOISE BY USING MODULATION SPECTRUM

37



combined with a lower limit of SFR below 400 Hz. The

same trend was observed when SNR ¼ 0 dB, although the

FRRs are higher than and the FARs are lower than when

SNR ¼ 5 or 10 dB.

For babble, restaurant and street noises, the same trend

was observed in car noise (SNR ¼ 5 dB). For example,

when the lower limit of SFR is increased from 200 to

500 Hz, the FRRs increase, but the FARs remain almost the

same.

The results of the proposed method suggest that the

upper limit frequency of 1,000–2,000 Hz performs well

with all five types of noises used. The lower limit

frequencies of more than 300 Hz tend to misrecognize

speech as non speech portions. Among them, when

combining the upper limit frequency of 1,000–2,000 Hz

with the lower limit frequency of 200 Hz, FRRs and FARs

are found to be lower than with other combinations. This

also implies that although the error rates for subway noise

are a bit different than for car noise, (Figs. 4–6), the

important components of SFR are the same at all SNR

levels. Such results are similar to [29] where it was

reported that the speech frequencies below 1.9 kHz contain

important information for speech intelligibility. Moreover,

the upper limit frequency between 2,000 and 3,000 Hz can

also be used, even though the FARs tend to be higher than

1,000–2,000 Hz in the case of subway (SNR ¼ 0 dB).

3.4. Experiment 1.2: Experiment of Modulation Fre-

quency Range (MFR)

In this section of Experiment 1, where we investigate

the appropriate modulation frequency range of our pro-

posed model, we used one of the best results we have found

so far for the fixed SFR: 200–2,000 Hz. The same subway,

car, babble, and exhibition noises are used as experimental

data, as well as the same evaluation methods: FRR and

FAR.
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Figures 13–16 indicate the results of the classification

of FRR and FAR errors as a function of MFR between

1–18 Hz for babble, subway, car and exhibition noises. For

babble noise, when combining the lower limit of 3 Hz with

the upper limit of MFR between 5–18 Hz, FRRs increased

gradually from 7.5% to 10.2%, whereas FARs fell more

rapidly from 27.4% to 15.8%. When combining the lower

limit of 4 Hz with the upper limit between 5–18 Hz, FRRs

increase slowly from 7.7% to 11.2% and FARs decrease

rapidly from 24.7% to 13.5%. However, the FRR and FAR

levels increased and decreased gradually in other MFR

ranges. The FRR and FAR become closer to one another

when MFR ¼ 4{14, 4–18, 5–11, 5–14, 5–18, 6–7 or

6–9 Hz. Especially, when MFR ¼ 5{11, 5–14, 5–18, and

6–9 Hz, the equal error rate is around 12%, which is the

lowest value among all the ranges. However, the combi-

nations of a lower limit of 1 Hz with upper limits between 7

and 18 Hz increased the FRRs up to 14%. Compared with

MFR ¼ 3{9 Hz, the MFR ¼ 2{18 Hz has almost the same

FAR value (approximately 19%) but the FRR value is

increased by about 3%. While FRR of MFR ¼ 2{18 Hz

and 3–18 Hz shows almost the same error rate, the FAR of

MFR ¼ 2{18 Hz is higher than MFR ¼ 3{18 Hz.

For subway and car noise, similar results are seen when

the lower limit of 3–5 Hz is combined with the upper limit

of 5–18 Hz. However, error rates of non-speech tend to be

lower than that of speech, for example, when the lower

limit higher than 5 Hz is combined with the upper limit

11–18 Hz; as well as in the case of MFR ¼ 6{7 Hz or 6–9

Hz. The purpose of our study is to extract a speech period,

thus, low speech error rates are preferred over low non-

speech error rates.
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Fig. 14 Error rates of MFR (subway, SNR ¼ 5 dB).
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In the case of exhibition noise, the results are slightly

different from the other noises when the lower limit is 6 Hz.

The equal error rate appears when MFR ¼ 6{18 Hz and the

FRR value is highest among other MFRs.

According to these results, when we use the frequency

components of the modulation spectrum between 3–9,

3–11, 3–14, 3–18, 4–9, 4–11, 4–14, 4–18, 5–7, 5–9, 5–11

and 5–14 Hz, the proposed method performs well for VAD.

Although there are important modulation components less

than 3 Hz which contribute to speech intelligibility, noises

also have these modulation frequencies. Besides, previous

studies indicate that the important MFR is between 1 and

16 Hz [15–17], so these outputs are considered reasonable

and proper. In the next experiment, we used one of the

MFRs for the feature vectors of the VAD.

4. EXPERIMENT 2

An additional experiment was conducted using the

optimal SFR and MFR from Experiment 1 to compare

speech detection performance with the other methods.

In Experiment 1, noises are artificially added for the

simulation. However, most speech data are generally

recorded with real life background noises. In order to

test speech data more closely resembling the speech

recording environment, speech data with real noise

(remote microphone) of the CENSREC-1-C corpus [23]

was used for Experiment 2. Furthermore, we also

compared our proposed method with other conventional

methods in this experiment by using the CENSREC-1-C

corpus.
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Fig. 16 Error rates of MFR (exhibition, SNR ¼ 5 dB).

0

5

10

15

20

25

30

35

1-
7

1-
9

1-
11

1-
14

1-
18 2-

7
2-

9
2-

11
2-

14
2-

18 3-
5

3-
6

3-
7

3-
9

3-
11

3-
14

3-
18 4-

5
4-

6
4-

7
4-

9
4-

11
4-

14
4-

18 5-
6

5-
7

5-
9

5-
11

5-
14

5-
18 6-

7
6-

9
6-

11
6-

14
6-

18

E
rr

or
  r

at
es

 (
%

)

MFR (Hz)

FRR FAR

Fig. 15 Error rates of MFR (car, SNR ¼ 5 dB).

Acoust. Sci. & Tech. 33, 1 (2012)

40



4.1. Experiment 2.1

4.1.1. Experimental method and evaluation

The frame length is 112.5 ms, the frame shift is 1/3

of the frame length, and SFR is 200–2,000 Hz. There

are several optimal MFRs that we obtained in Experi-

ment 1. Since an MFR of 5–14 Hz has an equal error

rate in babble noise, we chose it as the parameter in

this experiment. We also used MFR ¼ 3{18 Hz to compare

its results with MFR ¼ 5{14 Hz. We used the average

value of the modulation indices of this MFR as the

feature vector for VAD. Speech hit rates and non-speech

hit rates were used to evaluate the results and are defined

as:

Speech hit rates (%) ¼ 100� FRR; and ð7Þ

Non-Speech hit rates (%) ¼ 100� FAR: ð8Þ

To investigate how well the modulation-spectrum-

based features perform for VAD, we compare our results to

the energy-based ‘‘Baseline’’ results in the CENSREC-1-C

Corpus by means of ROC curves. When making the ROC

curves, the speech and non-speech hit rates were calculated

while changing the threshold value from 0.01 to 0.85 in

0.01 increasing steps. As in Experiment 1, we considered

the 250 ms after the end point of speech to be a speech

period.

4.1.2. Results and discussion

Figures 17 and 18 show the results of the ROC

curves of the real noisy environment. Figure 17 shows

the results for each SNR condition, and Fig. 18 shows

the results for each noise type. The results of Figs. 17

and 18 are averaged by SNR levels and noise types,

respectively. These results illustrate that our proposed

method outperforms the Baseline in the ROC space, as

the lines of our proposed method are located towards the

upper right of the ROC space. As the accuracy rate gets

closer to 100%, we have good speech and non-speech

detection rates. According to Fig. 17, the results of

MFR ¼ 5{14 Hz improves the speech hit rate by ap-

proximately 17% and the non-speech hit rate by 11% for

the low SNR level. For the high SNR level, the speech

hit rate of MFR ¼ 5{14 Hz increases by roughly 21%

while the non-speech hit rate improves by 17% com-

pared to the baseline. Also in Fig. 18, street noise has

better results than restaurant noise. The speech/non-

speech hit rates for street noise improve approximately

25% over the conventional method, whereas the speech

hit rate for restaurant noise improves by only around 3%

and the non-speech hit rate by 8%. The restaurant noise

was recorded in school cafeterias where the background

noise included speech, so the modulation spectrum of

restaurant noise is similar to speech, while street noise is

not (see Fig. 2). Thus, it is difficult to discriminate

restaurant noise and speech with a modulation spectrum.

However, the modulation spectrum still works well with

the high SNR environment with different types of noise,

including babble.

MFR ¼ 3{18 Hz has almost the same results as

MFR ¼ 5{14 Hz except for a high SNR level (Fig. 17)

and street noise (Fig. 18). These exceptions have a non-

speech hit rate approximately 3% lower when MFR ¼
3{18 Hz than when MFR ¼ 5{14 Hz. This is probably

because when using MFR ¼ 3{18 Hz, the FAR is higher

than when MFR ¼ 5{14 Hz, according to Experiment 1.2

(Figs. 13–16).
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4.2. Experiment 2.2: Comparison with Other Conven-

tional Methods

4.2.1. Experimental method and evaluation

We conducted two experiments using MFR ¼ 3{9 Hz,

the optimal parameter from Experiment 1, and

MFR ¼ 1{18 Hz, and compared the results. In general,

the VAD method miss-detects the non speech portion as

speech (FAR) for several frames at the end points of

speech. However, the utterance evaluation in this experi-

ment could address this problem by ignoring miss-

detections within a margin of several hundred milliseconds

around the end points of each speech portion. Moreover,

MFR ¼ 3{9 Hz has the lowest FRR among the optimal

MFRs; therefore we have concluded this range will

perform VAD well. The modulation indices within the

MFR were averaged to obtain a single feature value per

frame; if the value was greater than the threshold, we

determined that frame to be speech, and if not, we

considered it non-speech. The frame length is 112.5 ms,

the frame shift is 1/3 of the frame length and SFR is 200–

2,000 Hz.

We used utterance level performance to evaluate the

results based on the utterance correct rates (Corr) and the

utterance accuracy rates (Acc) defined as follows:

Corr ð%Þ ¼ ðNc=NuÞ � 100 and ð9Þ

Acc ð%Þ ¼ ððNc � NfÞ=NuÞ � 100; ð10Þ

where Nc, Nf and Nu are defined as the number of correctly

detected utterances, the number of incorrectly detected

utterances, and the total number of speech utterances,

respectively. When calculating multiple target data, we

computed the Nc, Nf of every data point and then evaluated

its mean value [23].

As in [23], the non-speech portion shorter than the

500 ms was defined as a speech portion. If the detected

utterance was shorter than 100 ms, the detection was

rejected. Both ends of the speech portions were extended

by 300 ms according to the results in [23]. The optimal

threshold, THR, was determined as in Experiment 1; and R

was set to 45. To avoid the effect of threshold, we tested

several values of r. As a result, the optimal r was set to

0 and �1 when using MFR ¼ 3{9 Hz, MFR ¼ 1{18 Hz,

respectively.

4.2.2. Results and discussion

Table 1 shows the utterance-level evaluation results for

the proposed method and other conventional methods. In

the table, the row headings have the following representa-

tions: a) Baseline is the VAD technique of CENSREC-1-C

(energy-based VAD with adaptive threshold) [23], b) AFE

is the baseline ETSI ES 202 050 (advanced front-end) [6],

c) G.729B is ITU-T G.729 Annex B [2], d) PARADE is the

periodic to aperiodic component ratio based VAD [8,30], e)

Sohn is the statistical model-based VAD method proposed

by Sohn [5], and f) Proposed (1–18 Hz) and Proposed

(3–9 Hz) represent our proposed method with different

MFRs. In [31], the results of the conventional methods are

provided.

Our purpose in this experiment is to compare our

results with the standard methods, so we used AFE,

G.729B and Sohn as a reference.

Following, we will compare our Proposed (3–9 Hz)

method with the other conventional methods. For restau-

rant and street noises at all SNR levels, the Corr of 3–9 Hz

has a significant improvement over baseline, AFE and

G.729B. Comparing with PARADE and Sohn, there is

significant improvement for every noise condition, except

Sohn for Street noise with a High SNR level. Moreover, the

average Corr of the modulation-spectrum based approach is

better than for the other methods. On the other hand, the

Acc of restaurant high, restaurant low and street high, street

low are 86.4%, 23.2%, 94.8% and 76.5%, respectively for

our proposed method. Among the conventional methods,

the Acc of G.729B and AFE is very low which means there

was a huge number of incorrectly detected utterances. The

Table 1 VAD results of speech data with real noise.

Rest. Rest. St. St.
Ave.

Rest. Rest. St. St.
Ave.

High Low High low High Low High low

Corr (%) Acc (%)

Baseline 74.2 56.5 39.4 41.5 52.9 21.5 �43:5 �15:7 �33:9 �17:9

AFE 43.8 46.7 79.1 71.9 60.4 �73:6 �94:2 �245:5 �167:0 �145:1

C
o
n
v
en

ti
o
n
al

G.729B 51.9 46.7 43.5 42.6 46.2 �204:4 �199:4 �72:2 �117:4 �148:3

PARADE 70.7 57.1 87.3 80.6 73.9 24.4 �6:7 64.4 54.5 34.1

Sohn 72.8 57.1 97.4 78.6 76.5 45.5 �6:4 94.5 57.4 47.8

P
ro

p
. 1–18 Hz 88.7 53.6 73.6 78.0 73.5 82.3 9.3 64.9 65.5 55.5

3–9 Hz 94.2 64.3 96.2 86.4 85.3 86.4 23.2 94.8 76.5 70.2

(Rest.: Restaurant, St.: Street, Ave.: Average, Prop.: Proposed)
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Acc of both noises outperforms other methods similar to

Corr. Additionally, the average of Acc of the proposed

methods is 70.2% which has a significant improvement

over G.729B, AFE, Baseline, PARADE and it is 22.4%

improvement over Sohn. Thus, considering of the average

of Corr and Acc, our proposed VAD yielded robust results

when compared to the other five VAD methods analyzed.

Our Proposed (1–18 Hz) also has an improvement over

the other methods except for the average of Corr for

PARADE and Sohn. Also, the average of Acc of 1–18 Hz is

higher in our method than in the other five methods. Still,

our proposed method with an MFR of (3–9 Hz) outper-

forms Proposed (1–18 Hz).

5. CONCLUSION

This study presented a novel VAD algorithm for

improving speech detection in noisy environments. The

proposed VAD algorithm is based on the modulation

spectrum of the whole speech data, and it used the

modulation index as its feature.

Speech/non-speech detection using the CENSREC-1-C

corpus was conducted to investigate the optimal speech

frequency range and modulation frequency range. The

modulation spectrum based VAD obtained the best

performance in detecting speech periods when combining

the lower limit of less than 300 Hz with an upper limit

between 1,000 and 2,000 Hz for SFR, and when MFR ¼
3{9, 3–11, 3–14, 3–18, 4–9, 4–11, 4–14, 4–18, 5–7, 5–9,

5–11 and 5–14 Hz.

An analysis of the ROC curves was also conducted

using the same corpus to assess the performance of the

proposed algorithm by comparing it to the results provided

with the corpus, and the best parameters from the first

experiment are used as its parameter. The results witnessed

an improvement in both speech and non-speech hit rates

over the Baseline method. Moreover, when comparing with

other conventional methods, our proposed methods per-

formed well for both Corr and Acc.

In conclusion, the present study’s two experiments

suggest that the modulation spectrum can be applied to

detect speech and non-speech periods over a wide range of

SNRs (0, 5, 10, 15, 20 dB) for VAD in the future. However,

further studies are required to clarify the ability of VAD

with other sentence corpora and other types of additive

noise, including music. Additionally, the proposed method

itself can detect speech periods well, but we expect

improvements as we combine it with other speech features.
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